SOME BASIC THEOREMS FOR DEVELOPING TESTS OF FIT FOR
THE CASE OF THE NON-PARAMETRIC PROBABILITY
DISTRIBUTION FUNCTION, I

By Braprorp F. KiMBALL
State Department of Public Service, New York, N. Y.

1. Summary. In developing tests of fit based upon a sample O,(z;) in the
case that the cumulative distribution function F(X) of the universe of X’s is
not necessarily a function of a finite number of specific parameters—sometimes
known as the non-parametric case—it has been pointed out by several writers
that the “probability integral transformation” is a useful device (cf. [1]-[4]).

The author finds that a modification of this approach is more effective. This
modification is to use a transformation of ordered sample values z; from a random
sample O, (z;) based on successive differences of the cdf values F(x.).

A theorem is proved giving a simple formula for the expected values of the
products of powers of these differences, where all differences from 1 ton + 1 are
involved in a symmetrical manner.

The moment generating function of the test function defined as the sum of m
squares of these successive differences is developed and the application of such
a test function is briefly discussed.

2. Introduction. Let the sample values z; be ordered so that
2.1) Ti S Tin, Z=12---,n—1).

Let F, denote the value of the cdf F(X) associated with the rth ordered sample
value x,. Thus
2.2 F. = F(z,).

Consider the following transformation of the ordered sample values z; based:
upon the (hypothetically) known cumulative distribution function F(X) which
will be taken as a continuous function of X over its admissible range:

w =F,
(2.3) u =F,—F,,, (r=2,8,---,n)
Uny1r = 1-—F n e

The restrictions on F; are that

(2.4) F;£Fi,and0 = F; £ 1.

The above transformation (2.3) translates these conditions into the symmetrical
conditions
(2.5) 0 =wui,andu + us + -+ 4 Un + Unpa = L.
A one-to-one correspondence between u; and F; exists if one of the u; be omit-
ted,—say ug . With us omitted, the Jacobian of the transformation from F; to u;
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has value unity. The probability density of the sample O,(z;), with x; ordered,
is given by

(2.6) P[0,(x:)] dO, = n! dF,dF; --- dF, .
Hence with ug omitted,
2.7 P[On(2:)] dOy = n! duy duy - - - dug dugys *++ dtnys .

The sample space of the u; with us omitted, is that portion of the n 4+ 1
Euclidean space of all the u; variables, bounded by the coordinate hyperplanes,
which is on the projection of the hyperplane (2.5) upon the hyperplane uz = 0.
This is a region in the n-space of the u; with 4 omitted, bounded by the coor-
dinate hyperplanes and the hyperplane

(2.8) U+ U+ oo Fuga A Uppn v Un F Unn = 1
Thus the formal integral of the pdf of the u; over sample space is

(2.9) nl f n f duy < - - dugadugys - dttgy = 1

with 0 = u;, and u; bounded above by the hyperplane (2.8).

It is now clear that both the pdf and the sample space of the u; (with ug
omitted) are symmetrical in the u;. This fact leads to compleiz symmetry of
the joint distribution function of any set of u;, over< = 1 ton + 1 including ug,
relative to the u;selected. Other interesting results are forthcoming.

3. Basic mathematical theorem. Uéing the techniques associated with the
Beta function, the expectation of the products of powers u; is found to be
(3 1) E[u?.us .u': see ]

" =T+ DI+ U@+ DIw+ 1 - /Te+p+g+w+ -+ +1)
where 1, s, t, etc., are any set of different indices (for the present other than g)
from the integers 1 ton + 1, and p, ¢, w, ete., are any real numbers greater than
minus one. The relation (3.1) can further be generalized to the case where ug
may be included. This will be proved for the case n = 2, with p, ¢ and w
taken as integers. The generalization can be concluded from inspection. Thus
with

us = 1 — ur — ug,

1 1—ug
Elu?-ud-u¥] = 21 f 8 dus fo w?( — up — ua)® dug
0 N

1 1
= 2![0 ug(l — uz)”"""lj‘; s (1 — s)” ds

21plw! v o 21plqlw!
= L . - 1 — d = .
(p+w+1)1fo“2( va) T Fetw T

Hence the theorem:
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THEOREM. Given a random sample of n values of X from a universe with cdf
F(X) which is continuous over the range of X. With the sample values z; ordered
s0 that x; < iy define a set of n + 1 variables u; as the successive differences of
F(x;) by the relations (2.3). The expected value of the product of real powers greater
than minus one of any or all of the u; , (i = 1,2, - -+ ,n + 1), is given by the rela-
tion (3.1) above (not subject to the omission of ug).

There are many interesting consequences of this theorem. Perhaps the most

striking is the following:

CorOLLARY 1. Let a range a(m, k) for positive integer m be defined by
(3.2) a(m, k) = F(tr4m) — F(ai)
with =012 - ,nyandm =n+1-—%k

under the comvention
F(zo) = 0, "F(Zapr) = 1.

The probability distribution of a(m, k) ©s independent of k and hence s the same as
that of F(x.,).

Another interesting consequence (not new) is the following:

CoroLLARY 2. The correlation of w; and ., © = k, is the same for all pairs
(¢, k) over the range of indices from 1 to n + 1, and has the value —1/n.

Introducing the notation

(3.3) m+r,=0O+nn+r—1) - @m+1),
the corollary follows from the relationships
E(u) = 1/(n+ 1), E@) = 2/[n + 2, E(uawm) = 1/[n + 2},.

The fact that the correlation between any two frequency differences u; and
is negative leads to the following more general relationship:

CoroLLARY 3. For any set of different indices 1, j, k, etc., and for any positive
numbers p, q, 7, etc., the expectation of the product of the powers p, q, r, --- of
Ui, Uj, Ux -+~ 1S less than the product of the expectations of the powers taken
separately:

(34 Eu?-uj-ug -] < E(ul)-E(u)-E(uz) - .

This follows from generalization of the relation

I'(n + 1)I'(p + 1)I'(¢ + 1)T'(r + 1)
n+p+g+r+1)

[T(n + DPT( + 1)@ 4+ I + 1)
'n+p+1I(n+q¢g+ )I(n+r+1)°
The above theorem suggests the possibility of test functions for fitted distribu-

tions, relative to a universe with a cdf which, since it is merely conditioned by a
sufficient hypothesis for the theorem, may be of the non-parametric type.

<
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A test function of the form
(3.5) YV = Z ul, p real and positive

might first come to mind. If p = 1, compensatory effects of deviations reduce
the efficiency of the test function. One is thus led first to consider the test
function (3.5) for the case p = 2.

4. The moments of the probability distribution of y, = Zu’}. We are
first concerned with the problem of the determination of the moments of the
function

where 7 ranges over any particular fixed set of m integers which for simplicity
is usually taken as the first m.

One first recalls the fact that the result is independent of which m indices have
been selected; and that the expected value of any combination of powers is
independent of which specific subscripts of u; are involved.

Since the u; are correlated, principles of combinatory analysis are involved in
determining the moments of y.. . One possible way of obtaining the moments
is as follows:

Let v denote the rth moment of ¥, about y» = 0. Thus

(4-2) E[(ym)r] =V = E[(; u%)r]‘

Now in the expansion of (3 u})", the sum of the power indices of each term

is 2r. Thus referring back to (3.1) and (3.3) it will be noted that the expected
value of each such term will have the common factor

1/['n + 2r]2r z
Consider a general term of the expansion of (3 u})"

2ry

2 .
Crirgeeorg® Wig Ugy® + = = Uk, with mn+r4- - F+nrn=nr

Clearly
EEui? o ul®) = 2r 120 -+ 20 V[0 + 2, .
and the coefficient C,,..., is the multinomial coefficient

r!

Cripgereyy = —T— T .
e R ) O o

Now in the expansion of (D u2)" group the terms which have the same set of

k values of r;, irrespective of which indices of u; are involved. The number of
such terms (since each involves k different indices) is 7). If ry, 72, +++, 7%,
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are all different each combination could be taken in k! different ways. Thus with
r’s all different and fixed, the sum of all coefficients of terms with same combina-
tion of 2r; powers (irrespective of variation of indices of the u,) is

mY, — "
(IO) k! T1!T2! L Tk! :

This would then constitute the total multiplier for
2r1 1 219 1 e 21 /[0 + 27,

for a given set of &k r’s which are all different.

If some of r’s are repeated, let k, , k2, - - - , ks denote the number of repetitions
of each different r; (k; = 1, and k; + k2 + --- + k, = k). Then each com-
bination of the k r’s corresponding to a set of k products could be taken in

k1 (ky! gl = o k)

different ways. Hence the lemmas:
Lemma 1. Consider all admissible sets of k different subscripts of u; and a fixed

set of values of r = 11,7y, ++ -, 1% where
ntred et rn=r

such that s of these r’s are different, and the number of repetitions in the set of r’s is
gwen by ky ks -+ ks (ks = 1, and kv + ks + -+- + k, = k). The composite
coeffictent of the terms in v, tnvolving the facior

2r1! 212! oo 21l /[n 4 21,

18 given by

m k! r!
4.3) (k)kllkzl’”ka!. rlral ee e 1pl”

Ezxamples of computation of v, by means of the¢ above lemma. The first order
moment is given by

(4.4 o= B(2ui) = m2V/ln + 2.

The second order moment is given by
v = E[(ud)?] = CiE(ud) + C.E(ufu3),

and determining the values of C; from Lemma 1,

i} o= [t 4 (3) (2) 222 /1o +
(4.5) vz=[m4!+8(7;):|/[n+4]‘=[m+(1;2@>%]/(n1_4).
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Again for the third order moment, ,
vy = B[(Cw)’] = CiE(w) + CLEWiug) + C:E(wiului),

and using Lemma 1,

_ m\ 2! 3! m\3! 3!
= [m6! + (2) i 115 214 + (3)37, T 2!2!2!]/[n + 6o

_ [msz + (’;‘) 213141 + (’g) 2!2!2!3!]/[n + 6le
or
w @R/

Similarly writing the fourth moment in the form
u = CiEW) + C.E(ui) + CsE(usuy) + CoE(uiuiui) + CoB(winjuiul)

and using Lemma 1 it reduces to

_ m\ 2 m\ 3 m\ 3 m\ 1 n+8
an we[n4(3)7+ ()5 +()m+ (D) wl/ (37
Higher order moments of the probability distribution function may be com-

puted as desired.
An alternate method of computing the moments of the distribution of this test

function is the following:
Consider a function go(xz) such that

d’g.(0) _

4.8) - = @b 90 =1

Thus

(4.9 E[u"] = [d'g(0)/dz")/[n + 2], .

From the principles of combinatory analysis of linear operators, it follows that!
m .

(¢.10) (o) = T oo,

Although this is an enlightening analytical form, actual computations seem to be
simpler with the use of Lemma 1.

1One way of seeing this is to first think of the u; as statistically independent. The
numerators of the resulting terms would be the same as in (4.10). When the u; are taken
ag dependent, by virtue of (3.1) the numerators will remain the same while all denominators
will reduce to [n + 2], .
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Moment generating function. The moment generating function of the prob-
ability distribution of y.. can be written as

@.11) E¢) = Got,m) = 1 + g [d (g0 @)]™/dx" | smal /[N + 2rert"/7!

with
go@) =1+ 21z + 412 /20 4+ 612%/31 + - + (2r) 127/r! + -+
n+ 2y =n+2)n4+2r —1) - (n+ 1).

. Although go(z) exists only as a formal power series, Go(t, m) is defined by (4.11)
as a power series with positive coefficients, converging for all .

5.- Some comments on test function, p = 2, At the present time the study of
the test function for p = 2 has not gone far enough to justify publication of re-
sults. One difficulty is that although its asymptotic distribution function ap-
pears to be normal, the convergence towards normalcy may be extremely slow
in some cases.

Furthermore there are indications that the case m = n 4 1 will give the most
definitive results not only because the complete range of data is used, but also
because errors of Type IT would in general have a less erratic effect.

For the case m = n 4 1 the mean, variance and third and fourth reduced
moments (i.e. moments about the mean divided by corresponding power of o)
are:

Case m = n + 1.

E(yny) = 2/(n +2), o =4n/l(n + 2)’(n + 3)(n + 4)],

o = /aa= 10n — 4 (n + 3)(n + 4)
2T e TR n

. = [ n* + 101n® + 14n — 8 | ][3(1?, + 3)(n + 4)]
¢ (n + 5)(n 4+ 6)(n 4+ 7)(n + 8) n

_ 6(41n’ + 241n° + 118n” — 784n — 48)
n(n + 5)(n + 6)(n + 7)(n + 8)

If data is fot grouped the test may be applied as follows: Given a function
Q(X) which has been fitted to the cdf F(X). From a random sample of size n
with z; ordered as in (2.1) compute the successive differences of @(x;) to obtain
the variables u; . ‘Then consider the sum of the squares

*2

U* = Ui .
n+l

(6.1)

If Q(X) is a true representation of F(X) the variation of U* will follow that of
Yns1. Thus the expected value of U*, its variance etc. will be independent of
the fitted function Q(X), which represents certain advantages over the x* test.
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The effect of Type II errors can be roughly analyzed as follows: In considering
the effect of such errors the testing procedure must be criticized from the point
of view that

QX) # F(X).

Form = n + 1 it still is true that
> u:" =1

which tends to act as a control upon U*. For example set

w o=+ xi.
Then from the above relation it follows that
(5.2) Zx; = 0.
Write U* as
U* = 2u; + 2% + 22uix

= 2u; + 2% + (22x)/(n + 1) + 2Zx5(u)

where 6(u;) denotes the variation of the true frequency differences from their
expected value 1/(n + 1).

The variation 8(%,) will be to a considerable degree independent of x;. Thus
the term Zx} will in general tend to be larger than the last term on the right.
The third term on the right will be zero by virtue of (5.2), and hence U* will tend
to be larger than y,4+1 . A similar effect upon the sampling variance of U* can
be noted. Hence an interval of rejection

U* = A, Ply,11 = A] = a = confidence level,

(56.3)

is pointed to.

On the other hand if m < n 4 1 the condition (5.2) no longer holds, the term
(2 Zx)/(n + 1) of (5.8) will not be zero and in many cases would dominate the
other two error terms. Thus it is easily conceivable that one may have in the
casem <n 41 '

U:: < Ynm

even when the d’screpancies x; are large. Hence in the case m < n + 1 choice
of confidence interval will require considerable care (see [1]).

Although the distribution of y.4. for small # is decidedly non-normal, if the
test function is replaced by

(5.4) Tapr = Clus — 1/(n + DI}

it will be found that the probability density function takes on the normal charac-
ter quite rapidly with increasing n. Indeed the author has found that a com-
puted approximation to the probability density function of 7,41 withn = 4 is
decidedly normal in character.



548 ‘BRADFORD F. KIMBALL

REFERENCES

[1] J. NEYMAN, “Smooth test for goodness of fit,”’ Skand. Aktuar. Tidskn. (1937) p. 149.

[2] E. S. PearsoN, “The probability integral transformation for testing goodness of fit
and combining independent tests of significance,” Biometrika, Vol. 30 (1938),
pp. 134-148.

[3] E. J. GuMBEL, “Simple tests for given hypothesis,” Biometrika, Vol. 32 (1942), pp. 317-
333.

[4] H. Scuerrf anp J. W. Tukey, “Non-parametric estimation, I. Validation of order
statistics,”” Annals of Math. Stat., Vol. 16 (1945), pp. 187-192.



