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mal). The numbers would have equal probabilities insofar as this is attainable
by chaining. To obtain a random three-digit decimal series it would be neces-
sary to reject the numbers above 999 (decimal). This would amount to only
2.34% of the available data. As before, rejection could be accomplished easily
in the binary series by use of a ten-stage electronic counter.

Several promising devices are being considered for tabulating random numbers
in accordance with the principles discussed herein. Electronic or electrical
systems actuated by cosmic rays seem to be the most desirable. Tabulating
equipment may be wired to turn out random numbers, possibly as a by-product
of other card runs.

If only a few random numbers are needed, they can be obtained by much
simpler methods. For example, a coin may be tossed, letting heads and tails
represent +1 and —1, respectively The product of k successive tosses would
be tabulated a$ the random binary variable. Products equal to 41 and —1
would be coded as 1 and 0, respectively. Blocks of binary symbols would then
be converted to the decimal system as described above.
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NOTE ON THE ERROR IN INTERPOLATION OF A FUNCTION OF TWO
INDEPENDENT VARIABLES

By W. M. Kincaip
University of Michigan

Suppose that g is a functon of one real variable x and % is an interpolation func-
tion such that g(x) = h(z) forz = x1, 22, -+, 2.. Let f(z) = g(x) — h(z)

dr . .
and suppose that e f(x) exists in an interval containing the pointsx, , 2, - -+,

Z,. Then the error in interpolation may be estimated from the well-known
relation

F™ () -
(1) f(xo) = pou (2o — xl)(% — x2) -+ (20 — ),
where £ is some point in the smallest interval containing zo, 21, -+ , 2, .

In the most usual case, where h(z) is a polynomial of degree less than n, we
have f™(8) = ¢™(p).

It is natural to consider the corresponding situation for functions of two inde-
pendent real variables z and y. Let g and h be two functions such that g(z, y) =
h(z,y) forn points x = z; ,y = y:(s = 1,2, .-+ ,n). Setting f(z,y) = g(z,y) —
h(z, y) as before, we have f(z;,y:) = 0fori = 1,2, ---,n. Then if (x, yo)
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86 W. M. KINCAID

is a point at which g and & are defined, we may ask whether there is any formula
corresponding to (1) from which the error f(xo , ) can be estimated.

Some restrictions must be placed upon the function f if any interesting results
are to be obtained. Let us suppose that f(z, y) can be expanded in a Taylor
series about each of the points (z;, ¥:)(¢ = 0, 1, --- , n) with a region of con-
vergence sufficient to include all the points of the set. These conditions are more
stringent ones than will be required for obtaining the later results; on the other
hand, they would almost always be satisfied in any practical problem of inter-
polation, so it scarcely seems worthwhile to look for the weakest possible con-
ditions at this point.

The first case of real interest isn = 3. It follows from the general statement
of Taylor’s theorem with the remainder that

0 = f(x: ,y) = f(x, yo) + (x: — o) fx(wo , yo) + (yi — yo)fv(xo )

(2) + Mz — 20 faxlts, 1) + 2k — 20)(ws — Yo)fa(Eis 1)

+ (y' - yO)sz(si ’ ni)] (’: = 1) 27 3)7
where (£, 7:) is a point on the line segment joining (xo, %) and (z: , y:) for ¢ =
1,2,3.

The equation (2) may be regarded as a set of three linear equations in the two
quantities fz(o , %) and fy(xo , o). The condition that these shall be consistent is

f@o,y0) + Uy m1— 2 91— Yo
3 f@o,y0) + Us Za— 2 y2— 1y | =0,
f@o,y) + Us 25— 20 ys — %o
where
Us = 3z — 20 aults , 1) + 2025 — 20) (s — yo)fau(Ei , 1) + @5 — 90 Fin(&i 5 1]
t=1273).

If the three points (zi, ys) (i = 1, 2, 3) are not in a straight line, (3) can be
written in the form

Up 21— 2 Y1— %

Us 22— %0 Y2 — Yo

Us %3 — %0 Ys — Yo
1 1 Y

4 f@o, yo) = —

1 T2 Y2
1 x5 y;

This expression is analogous to (1), though far less simple and elegant in form.
m(m + 1)

A similar treatment can evidently be used in all cases of the typen= 3
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For example, for n = 6 the equation corresponding to (4) is

Vizi— 2o y1— %o (31— 20 (@1 — 20) (1 — o) (2 — Wo)’
Vo 2 — 2 Y2 — 4o (22 — 20)" (22 — 20) (Y2 — ¥0) (2 — o)’
Vs 25 — 2o ys — Yo (@ — 20)” (25 — %o) (s — ¥0) (s — v0)’
Vi zi— 20 ya — yo (@ — 20)" (@ — 20) (s — y0) (w4 — y0)*
Vs 25— Yo 4s — Yo (@5 — 20)” (25 — 20) (s — ¥o) (s — o)’

Ve s — 20 ys — Yo (%6 — 0)* (%6 — 20) (s — Yo) (¥s — %0)°
121 93 21 2w U3

(5) f (xﬁy Yo) = —

1 z2 Y5 2 Ty U
1 23 y3 %3 Tays Vi
1 24 y§ o Tays 43

1 25 Y3 @5 Tsys Y

1 26 42 26 TelYs Yo
where
Vi = (i — 20)feeeEi, 1) + 3(x: — 20)° (Wi — Yo)fam(Ei , 1)
+3@ — yolfanEiy 1) + Wi — ¥ fumlEs, )] G =1,2,---,6).
(Equation (5) breaks down only if the six points (x1, y1) - -+ (%, ys) lic on a
single conic.)
As an example of the general case we may consider n = 4. We write
@i, y) = f(2o,y0) + (@i — 2o)fo(20 , yo) + ¥ — y0)fu(o , Yo)
+3 (@i — 20)fealts , 1) + 2(x: — 20) (Wi — YO fa(Ei y 70)
+ (i — yO)sz(fs'; )] (¢ =123,4).
Now,
fesEi s 1) = faxl@o, y0) + (i — ) fasslEi , 1) + (15 — yo)fams(Ei 5 14),
where (£;, ;) is a point on the line segment between (o , yo) and (¢ , #:).
Proceeding as before yields
Wi o1—20 41— % (11— 2)°
Wy 22— 2 y2— Yo (22 — x0)°
Ws 23— a0 ys— 9 (2 — 0)°

Wi xs — 20 Ys — %o (x4 — 330)2

(6) f@o, y0) = — 1 oo 2

Ty Yo T

1
1 23 ys 23
1

T Ys T
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with
W= %[(xi - -’00)2(5.' - xo)fnz(f: ) 'II:) + (xe - 5130)2("75 - yo)fzzy(f:' ’ ﬂ:)
+ 2(x: — 20) (s — yolfmlEi, 1) + (Wi — 90 fulti, 29)].

Corresponding formulas can be derived in this way for any value of »; in fact,
several alternatives may be obtained in each case. 1In all cases the error f(xo , o)
is given in terms of the derivatives of g alone if a polynomial of a certain type is
used for the interpolating function. For equation (4), the suitable polynomial
would beh(z ,y) = a + bz + cy;for (5), h(z,y) = a + bz + cy + dx? + exy + fy?;
for (6), h(z,y) = @ + bx + cy + d2’. If the interpolating function h(z, y)
is not so chosen, the formulas remain valid, but derivatives of h will appear.

The same procedure is applicable to functions of any number of independent
variables.
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ON A LEMMA BY KOLMOGOROFF

By Kai-Lar Caune

Princeton University

The following lemma was proved by Kolmogoroff [1]:

If e, e, -+, e, are independent events and U an arbitrary event such that
(W(X) denoting the probability of X and W.(X) the conditional probability of X
under the hypothesis of e)

Weg(U) g u, W(el + b + en) g Ue
Then
W(U) z ',

This result seems of some interest in itself and may also have practical applica-
tions, for it is easily seen that [2] in general if e, ez, - - - , e, are arbitrary no
information about W,..+..4.(U) can be obtained from that about W, (U),
k=1,---,n. From this point of view the constant 1/9 is interesting, though
it is unimportant in Kolmogoroff’s proof of the law of large numbers. Using his
original method this constant can easily be improved to 1/8. However, the fol-
lowing method will give a better result. At the same time we shall put it into
a more general form.

Let

Wal) 2 a Zl W () = 6.



