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which implies (¢’), and a theorem of Scheffé [2] states that (c’) implies (c).?
Finally, it is not hard to show that the condition
(d) lim fo(2) = fo(x)  almost everywhere
implies (¢’) but not conversely.

Summing up, we arrive at the following complete set of implication relations
among the various modes of convergence which we have considered:

(200 . (d) = (") = () 2 (¢) = (b)) = (b) — (a).
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ON RANDOM VARIABLES WITH COMPARABLE PEAKEDNESS

By Z. W. BirNBAUM

University of Washington

The quality of a distribution usually referred to as its peakedness has often
been measured by the fourth moment of the distribution. It is known, however,
that there is no definite connection between the value of the fourth moment and
what one may intuitively consider as the amount of pealkedness of a distribution.!
In the present paper a definition of relative peakedness is proposed and it is shown
that this concept has properties which may make it practically applicable.

DerinitioN. Let Y and Z be real random variables and Y1 and Z real con-
stants. We shall say that Y is more peaked about Y, than 7 about Z, if the in-
equality

P(Y-Ti|z2T)=P|Z—-2Z12T7)

s true for all T = 0.

If, for example, Y and Z are normal random variables with expectations Y
and Z, and standard deviations ¢, and o, , and if o, < o, , then Y is more peaked
about Y, than Z about Z,. Similarly; if Y is a random variable such that
P(Y <a) = P(Y >b) =0fora < b, and if Z is the discrete random variable
with P(Z = a) = P(Z = b) = }, then Y is more peaked about 1(a + b) than
Z about the same point.

2Scheffé actually proves that (d) implies (¢), but the Lebesgue convergence theorem on
which his proof is based holds for convergence in measure (see e.g. [3]).

1 1. Kaplansky, ‘A common error concerning kurtosis,” Am. Stat. Assn. Jour., Vol. 40
(1945), p. 259.
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LemMa. Let Yy, Ys, Zy, Zy be continuous random variables” with the probability

densities 01(Y1), 0a(Ys), fi(Z1), fo(Zs) such that
1°. Yiand Y, are independent, Z, and Z, are independent,
2’ iV = @i(—= Y) forall Yi, f{(Z) = fi(— Z) forall Z;, (i = 1, 2),
3°. ¢o(Y2) and fi(Zy) are not-increasing functions for positive values of the vari-
ables, and
4°, Y, is more peaked about O than Z; , for i = 1, 2.
LetY =Y+ Yeand Z = Zy + Z,. Under these assumptions Y 1s more peaked

about 0 than Z.

Proor: Let ®,(y) = P(Y; £ y), Fiz) = P(Z; £ 2),for7 = 1, 2, be the cumula-
tive probability functions. For any random variables Y1, Y., Z1, Z> (not neces-
sarily continuous) which fulfil assumption 1° we have, for any T, the relation-

ships
PV < T) — PUZ §)=[3MT—WM$—MT—WMM
- [ : BT — &) — Fi(T — 9)ldy(s)
+ j: : Fi(T — §)[dBu(s) — dFy(s)]
- [ : BT — 8) — FyT — )ldo(s)
~ [t ~ Fuabr — 9
= [: @(T — s) — Fy(T — 9)}d®s(s)
+[JMT—$—HW“WM@

= I(T) + ©(T),

where IL(T) = j—m [@(T — s) — Fi(T — s)]dds(s)

00

= [®1(—5) — Fi(—9)]dD(T + 9)

LT

= [ - a@uer - 9
+ Bu(—8) — Fi(—9)ldea(T + )1,

ete.

2 As defined e.g. in H. Cramér, Mathematical Methods of Statistics, Princeton University
Press, 1946, p. 169.
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, If the random variables have distributions symmetrical about zero (assumption
2°) this is equal to

+o
fo {{P(Zy£8) — P(Y, S )ldP(Yo £ T — 3)

+[P(Y1 = —s) — P(Zy £ —s)ldP(Y, = T + 8)}

3 <
= fo 1l —PZ>8) —1+4+P¥,> )dP(Y2 < T — o)

+[P(Y129) — P(Z: 2 9)ldP(Y, = T + 9)}

= fow {[P(Y128) —P(ZiZ)dIP(Y;ST+s)+PY. =T — s}

—[P(Yy=38) — P(Z,=9)ldP(Y: = T — s)}>
and we obtain

1(T) = fo POz ) — P(Zy 2 WP, £ T + 9
(1.1) )
L PV, £T —8)] — fo+ [P(Yi=s) — P(Z = JdP(Y, < T — ).

By an analogous argument one derives the equality

+o0
LM = [ POz 9 — Pz 2 9liPZ S T + )
(1.2) o
+PZi =T - 9)] — l [P(Y:=s) — P(Z; = §)]dP(Z; = T — ).
Making use of the assumption that Y,, Y, , Z,, Z,, are continuous random vari-

ables, we conclude that the second integrals in (1.1) and (1.2) are zero, and we
may write

+o0
21) I(T) = ‘l [P(Yy Z 5) = P(Z1 2 9]leo(T + 5) — ooT — )]ds,

+o
(22) L(T) = _£ [P(Ys 2 5) = P(Z, 2 )]IA(T + ) — AT — s)lds.

For T = 0 we have, making use of assumption 3°,

T+ s) —e(T —8) S0f0=<s=T

eT +8) — T —8) =@o(s+T) —o(s —T) 00T =<5,
and similarly
(T 4+ 8) —fi(T —s) <0forall T = 0ands = 0.

Since according to assumption 4° we also have

P(Yir2s) —P(Z12s) =0

P(Y,=2s) —P(Z,2s) =0fors =0,
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both integrands in (2.1) and (2.2) are non-negative for all values of s, and we
conclude

PY=T) —P(Z=T)=LT + IxT) 20,
and hence
3.1 PY=zT) —P(Z=T) £0forT = 0.

From assumption 2° one easily sees that ¥ and Z have symmetrical probability
distributions. This together with (3.1) leads to

PYzT) -PZzT)=PY=s-T)-PZ=-T) =20,

and thus to
P(lY|=2T) —P(|Z|=T) =0forT =z 0.

As can be seen from (1.1) and (1.2), the assumptions of the Lemma, in par-
ticular the assumption that all variables are continuous and the assumption 3°,
are rather special sufficient conditions for Y being more peaked about 0 than Z.

TueorREM 1. Let Y and Z be continuous random variables with probability
densities o(Y) and f(Z) such that

1% o(=Y) = oY) for all Y, f(— Z) = f(Z) for all Z,

2°. o(Y) and f(Z) are not-increasing functions for positive values of the variables,

3°. Y is more peaked about O than Z.

LetY,,Yy, -, Yoand Z,, Z;, - - - , Z, be random samples of Y and Z, respec-

tively, and ¥, = ;lt > Y;,Z, = ;ll > Z; —Then ¥, is more peaked about 0 than
=1 =1

Z..

Proor. From the preceding Lemma one concludes by simple induction that
Y=Y, +Ys+ -+ Y,aswellas Z/ = Z, + Z, + --- 4+ Z, are continuous
random variables with distributions symmetrical about zero and probability
densities not-increasing for positive values of the variables, such that Y’ is more
peaked about 0 than Z’. From this the theorem follows immediately.

The conjecture that assumption 2° of Theorem 1 might be superfluous is in-
correct as may be seen from the following example:

Let Y be any continuous random variable with a distribution symmetrical
about zero and such that P(| Y| > a) = 0 for some @ > 0. Let Z be the dis-
crete random variable with P(Z = — a) = P(Z = a) = 3. We have for 0 <
T = a ‘

P(Y|zT) =1=P(|Z| 27D,

hence Y is more peaked about O than Z. If Y, Y, and Z;, Z; are random sam-
ples of size 2, we have

P(Zz=—a)=P(Zz=a)=i, P(Zz=0)=%‘,
and thus
P(|Z,|=T) =3for0< T < a.
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The random variable_ Y, is continuous, with a distribution symmetrical about
zero, such that P(] Y, | §_ a) = 1. There exists, therefore, a T; such that
0 < Ty £ aandthat P(|Ys| = T1) = 2. It follows that

Z-
P(|Y2|2T) =%>3%="P(Z|= T,

hence Y, is not more peaked about zero than Z,. The random variable Z is
discrete, but it can be approximated by a continuous random variable with a
U-shaped probability density, so that all the probabilities will be modified only
very slightly and ¥, still will not be more peaked than Z, . Nothing will change
in this example if one assumes that Y fulfils condition 2° of Theorem 1.

THEOREM 2. Let Y be a continuous random variable such that

1% (= Y) = oY) for all Y,

2°. o(Y) is a not-increasing function for Y > 0,

3° P(| Y| > a) = 0 for somea > 0.
Let Y1, Y2, -+, Y, be a random sample of size n and ¥, = 7-1521 Y;. Then,

=

fJor any y = 0, we have

(1) P(T.lz 0 = w(Y),

a

where

(4.2) ny =2 Y (-1 (;j) [g t+1) — k]".

N (n/2)(t+1)<k=n

Proor. Let Z be the random variable with uniform distribution in the

interval — 1 =72 = 1. If Zy, Z,,---, Z, is a random sample, then Z’' =
Zy 4+ Zy + --- + Z, has the cumulative probability function®
= 0, 2 < —n,
Pz <=1 3 (=1 (’?’)(z +n_ z) —n <z S
n! i< (2+n)/2 7 2
=1, z >n,

and Z, = % has the cumulative probability function

= 07 ¢ < -17

PZ.s9) =1 % <—1>‘(’?)[?(;+1>—z‘],—1g;gl,
n! i<y @+ 1 /12

=1, ¢ > 1

3 This expression is due to Laplace. For derivation and discussion, see: J. V. Uspensky,
Introduction to Mathematical Probability, McGraw-Hill, 1937, p. 279, and Cramér, op. cit.,
p. 245.
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Thus,
P(|Z.| 2 t) =21 — P(Z. s 1))

- 2{1 B 7%’ .-g(nfvz';(m) (-1 (7:)[; - i]”}’

and in view of the identity
Z‘; (—1)* (Z) (w — k)" = n!
this becomes

rizzo=2 = or(P)[pe+rn -k =wo

n! (n/2) (1) <ksn

for 0 £t < 1. The random variable i—) is obviously more peaked about zero

than Z. Since f—: and Z fulfil the assumptions of Theorem 1, it follows that

%‘ is more peaked about zero than Z, , that is

p( %‘i ;t)_s_ P(|Z,| = t) = ¥a(t) for t = 0.
Setting at = y, one obtains (4.1).

For n — o the function ¥.(f) approaches asymptotically the probability
P(| X | = t4/3n) for the normalized normal random variable X.* For n = 8
one obtains the following values which indicate a good approximation:

t 3998 5254 L6711
P(X|=tv/24) .05 01 .001
Ws(t) 049 0092  .0005.

For smaller values of n, ¥,(f) can be easily computed.
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A METHOD FOR OBTAINING RANDOM NUMBERS

By H. Burke Horton

Interstate Commerce Commission

The need for large quantities of random numbers to be used in sample design,
subsampling, and other statistical problems is well known. Tippett’s [1] num-
bers have been widely used for these purposes, despite criticism directed at
their lack of randomness. The following procedure may be of interest to those

¢ Cramér, op. cit., p. 245.



