PROBABILITY OF COINCIDENCE FOR TWO PERIODICALLY
RECURRING EVENTS!

By Paun 1. RicHARDS
Brookhaven National Laboratory

Summary. This paper contains a study of the following problem: Each of
two events recurs with definitely known period and duration, while the starting
time of each event is unknown. It is desired that, before the elapse of a certain
time, the events occur simultaneously and that this “overlap” be of at least a
given minimum duration.

The probability of this satisfactory coincidence is first evaluated, and it is
found that the solution, while mathematically adequate, is of no value for prac-
tical application. This circumstance arises from the possibility that, with
certain rational ratios of the periods, the events may “lock in step”. Accord-
ingly, an attempt is made to smooth the probability function with respect to
small variations in the ratio of the periods. Due to difficulties in manipulating
the number-theoretic expressions involved, this smoothing is carried through
only by the use of certain approximations. Moreover, because of these same
difficulties, an averaged value of the probability itself is not obtained, but, in
its stead, there is derived a formula for that fraction of randomly related repeated
trials in which the original probability will be less than one-half.

Thus, the original problem is not completely solved. The results obtained,
however, do allow one to compare the relative advantages of different situations
and to make a rough estimate of the likelihood of success. Generally speaking,
the analysis is applicable whenever the ratio of “on time” to “off time’’ is small
for each event.

1. Introduction. Our problem may be represented schematically as féllows:
Consider two pulse waves (Fig. 1) of periods T;, T,, pulse widths ¢, &, and
phases ¢1, ¢2. It is desired that these pulses overlap at least once within a given
time interval; moreover, an overlap is not satisfactory unless its duration is at
least as great as some assigned ¢,,. The starting phases ¢; and ¢, are unknown
for both waves. Our problem, then, would appear to be to calculate as a function
of time the probability of at least one overlap of duration at least ¢,.

This probability will be calculated later, and, while mathematically adequate,
is totally useless for practical application. This rather unusual occurrence’ in
applied mathematics arises from sources generally kept in mind only by experi-
mental physicists. Namely, the very nature of the science of measurement,
involving as it always does at some stage, the use of the human senses, precludes

1 This work was done in part under Contract No. OEMsr-411 between Harvard Univer-
sity and the Oifice of Scientific Research and Development, which assumes no responsibility
for the accuracy of the statements contained herein.
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PROBABILITY OF COINCIDENCE 17

the availability of mathematically exact values of the parameters of the problem.
In other words, although experimental error can sometimes be made amazingly
small, it can never be eliminated.

Now, as might be expected from the possibility that the waves may “lock in
step”’, our probability is extremely erratic with respect to very minute changes
in the periods Ty, T:.. For example, let T, = Ty = 100, = 100 (t. = 0); a
simple direct calculation then shows that, for all times greater than Ty = T, the
desired probability is 0.03. Now if we let 71 = T: + ¢, one wave-will “creep up”
on the other, and eventually (for times greater than T1T./¢) the probability is
unity! Thus it may very well happen in a practical application that the param-
eters are known to an accuracy essentially sufficient only to give the obvious
result: 0 < P < 1.
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In the practical problem originally considered, uncertainty in the data arose
not only from experimental error but also from slight instability of equipment.
Thus some means of averaging over variations in the periods had to be found
if the analysis was to be of any practical value whatsoever.

For reasons which will appear in the later analysis, this smoothing entails
difficulties which the author was unable to overcome with any great success; the
nature of the results which have been obtained is discussed in the next section.
These results involve several approximations which, generally speaking, are
based on the assumption that the ratios ¢;/T; are both small.

It might be noted finally that the obviously favorable situations ¢, > T or
t: > T, often cannot be used because of numerous practical difficulties.

2. Results. In this section, we shall summarize the results of the later
analysis for the benefit of those readers not interested in the latter. At the end
of this section, there is an outline of the practical application of the formulas.
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We shall continue to use the notation already introduced:
&, &z = durations of the events;
W T:, T: = periods of the events;
{» = minimum satisfactory duration of coincidence; and

P

Il

probability of at least one satisfactory coincidence.
We shall also use the (at present) rather arbitrary notation:
. t = (time — tn)
(2) Py = (i — tw)(ts — tm)/Ta T2
w= (b + t — 2tw)/ThT.

The probability function for short time intervals is:
(3) P = Py + wt, for t < Max(T;, Ts).
In any case:
4) P < Py + wt.

As already explained, the functional dependence of P for large ¢ is of no prac-
tical use due to its extremely erratic variation with small changes in the periods
Ty, T..

For reasons which will later become apparent, the only type of averaging which
has yet been carried to completion is the following. Consider that many trials
of equal length are made and that in each individual trial, all the parameters
are, by some mysterious device, held constant with absolute, mathematical
exactitude. Assume for definiteness that T, < T:. Between different trials,
let &, and T, vary in such a way that T:/T, takes all values within a range of
1 with equal probability. (In the original problem, the ratios ¢;/T: necessarily
remained constant.) The quantity f given below then represents that fraction
of the trials in which the rigorous probability is less than an assigned value =
Py + Q. Thus the smaller f is, the greater are the chances of success.

It must be admitted that this method assumes several things which are not
true in practice. First, the parameters of the problem probably vary by at
least a percent even within a single trial. More serious, the required variation
in Ty/T, may, in the extreme case T) =T, demand as much as 339, variation
in T,. While considerable variation does occur, it is doubtful that it attains
this magnitude. Finally, the method assumes that T, stays fixed as T varies,
whereas actually T; and T, vary simultaneously.

Despite these drawbacks, it was felt that the results were meaningful for the
practical problem. In any case, they must serve until a more adequate analysis
can be carried through.

The reader will notice that the final results have the form of a “probability of a
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probability”. It would thus seem that a simple integration would yield a true
probability, but, unfortunately, the formulas for f are reasonably accurate only
for @ < 1. The final formula for f = fraction of trials in which P < Py + @ is:

1 for tw < @,

1.216Q{1 +(%’ - 1) log (1 —t%)} forw >Q, Q<1/2

This expression is subject to error from several sources. First it is an approxi-
mation to a number-theoretic formula given in (31); this approximation is best
for ¢ and Q/w large compared to Max(Ty, Ts). A completely general comparison
of (31) and (5) = (33) is given in Fig. 2, where the agreement will be seen to be
quite adequate even for relatively small ¢t and @/w. (The dotted contours are
straight lines passing through the origin.) When ¢ and Q/w are small this first
source of error can be eliminated by using the solid contours of Fig. 2 in place
of (5).

Secondly, formula (31) itself is an approximation and involves the use of
simplified probability formulas and an assumption that P, and w are constant
as T, varies. The maximum possible magnitude of these errors in (31) is given
by (parentheses indicate functional dependence):

(6) Jtw, Q — po — @ < f(tw, Q) < f(1w, Q + po + @),

where, as T varies,

G f=

W, W = minimum, maximum values of w
Do = change in P,
¢ = maximum value of w* T, Ts.

Generally speaking, these errors are small if ¢;/7; are small and if ¢ is large com-
pared to Max(Ty, Ts). Also, there is considerable possibility that certain errors
will cancel in such a way as to make (6) correct with ¢ = 0.

We shall now outline the practical use of these results. Given nominal values
of the parameters defined in (1), choose a convenient value for @ < 1 (usually
Q = 1), and substitute into (2) to find tw/Q. From (5), one may then determine
f = fraction of trialsin which P < Py + Q. (Low values of f are thus desirable.)
For computational convenience, (5) has been plotted in Fig. 3, while, above the
range of Fig. 3, the following lies within 19}, of (5).

(7 f = 0608Q%w) for tw> 10Q.

Note also that (4) may often be of considerable use in quickly eliminating cases
of very poor probability, and recall also that (3) will give the true, directly mean-
ingful probability whenever ¢ is no greater than Max(T:, Ts).

Evaluation of the maximum possible error in f as so obtained is more com-
plicated. If { and @/w are small, Fig. 2 may be used to eliminate inexactness
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due to the approximation of (31) by (5) = (33). Otherwise, this error may
safely be assumed to be negligible (less than 0.025; (31) may be employed di-
rectly, but this is laborious unless Q/w is small). The remaining errors, given
by (6), may change depending on how T is assumed to vary. To make these

bounds as close as possible, it is best to choose Tp = Min(T,, T,) and then let
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T decrease from its nominal value by an amount sufficient to cause 7'1/T, to
increase by 1.

The reader may have noticed that f has a jump discontinuity as ¢ passes
through the value Q/w. This is not the result of approximations; it occurs also
in the number-theoretic formula (excepting only when Max(T,, Ts) = iw and
Q = %) and merely means that the “lock in” phenomena are suddenly able to
have an effect when ¢ becomes greater than Q/w.
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3. The probability function. Our problem has already been represented by
the pulse waves of Fig. 1. The starting phases ¢; , ¢ of the waves are random,
and we desire the probability P of at least one overlap of duration at least t,,
within a given time interval. Manifestly P = 0 until time ¢,; hence we shall
give ¢ the meaning already assigned in (2).

Consider any sub-interval of width ¢,.. The range of phases favorable to
satisfactory coincidence on this interval is easily seen tc be a rectangle with
sides (&1 — tm), (o — im) in the phase plane (¢;, ¢2). By proper choice of the
(arbitrary) zero-phase reference, the small rectangle favorable to coincidence on
(0, t») can be made to fall in the lower left corner of the phase plane (Fig. 4).
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As we allow the sub-interval (width ¢.) to advance in time, this small rectangle
will sweep out along a 45° line (Fig. 4); its horizontal displacement = vert. disp.
is given by ¢ as defined in (2). Since the phases must be measured modulo the
periods, we must ‘“switch back” the strip whenever it begins to leave the large
rectangle: 0 < ¢; < T1, 0 < ¢ < To; this is illustrated in Fig. 5.

The desired probability is then the area covered at least once by the strip
divided by (T:T,), the total available area of the phase plane.

Using Fig. 4, one can easily show that, before the strip begins to overlap itself:

(8) P = Py, + wt,

where {, Py, w are defined in (2).
A rectangle with opposite sides identified, as in Fig. 5, is topologically equiva-
lent to a torus. This gives a good geometric picture of the overlap phenomena.
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The strip winds diagonally about the torus until eventually (in general after
several full circuits) it strikes sufficiently near its starting point to overlap itself
on one edge. It then begins to fill the chinks between the previous circuits, and
this single overlap continues until the chinks are almost filled. The strip then
approaches its starting point from the side opposite to that on which single
overlap occurred. Thereafter, only the center section of the strip is cffective in
increasing the area covered. This double overlap continues until the entire
torus has been covered. A degenerate case is possible in which the strip, upon
its firsv.overlap, begins to retrace exactly its former path and the torus is never
fully covered. This corresponds to interlocking of the original waves of Fig. 1.

A rigorous proof of the above statements may be constructed by using the
fact that each change in behavior can occur only at the starting point. In this
manner, it is easily shown that: (a) single and double overlap occur in that order,
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(b) the strip area effective in covering changes only upon a change in the type of
overlap, and (c) the two types of overlap must occur on opposite sides of the
starting point.

The facts (a, b, ¢) may then be used to derive the probability function. For
the analytic analysis, it is best to return to the (¢; , ¢) plane. Overlap of any
type will first occur when the “unswitched-back” strip approaches sufficiently
near a point (n, T , n:T2) where n; and n. are non-negative integers not both zero.
The analysis is greatly shortened by noticing that the behavior is completely
determined by the distance of the line ¢; = ¢, from such points (even though
the strip is not centered on this line), while the width of the strip is (Fig. 4)
‘N)Tng/ '\/5.

A slight fine-structure may arise in the probability function where it changes
slope, depending on whether or not the leading corner of the moving rectangle
strikes one of the sides of the original small rectangle. These effects are small
if t;/ T are small and will be neglected below by supposing the strip to be gen-
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erated by a line segment oriented perpendicularly to its path. The error arising
from this procedure consists essentially in a delay or advance in the time at
which P changes slope. It may be seen that the maximum effect represents a
delay of At = wTT/2. The error introduced is then less than At4/2 multiplied
by that portion of the total width of the strip which becomes ineffective due to
the overlap considered. The sum of these effects must be less than that given
by using the total width of the strip; this gives the maximum error w’T,T./2.

The results of the method outlined are then as follows. Single overlap occurs
at ¢ = s where

9 s = §(m Ty + moTy),

and (m; , ms) is that pair of non-negative integers not both zero such that s is a
minimum and

= | _ Ma
(10) P = T, T, <w
Double overlap occurs at ¢ = d, where
(11) d = (T + neTy),

and (n;, ng) is that pair of non-negative integers not both zero such that d is a
minimum and the conditions

ny Ng

7,; _T_l < w,
(12)

ny Ng my me

(% ) ) <o
are satisfied. If we set
123 = o N2
(13) p2=p1 + . T, w,
the probability function is then
= Py + wt fort <s,

(14) P=Po+sw+ (t— s, fors <t <d,

=Pt+tswt+@—sp+ t—d)pa ford <,

where it is understood that P = 1 if (14) gives P > 1.

The degenerate case where the waves interlock is given correctly by this for-
malism. Namely, if the strip starts to retrace its path exactly, then p, = 0
and the second part of (12) shows that d does not exist. Equation (14) then
gives the correct result: P rises to the value Py + sw and never increases further.

4. The method of smoothing. We have already discussed in section 1 the
inadequacy of the formal mathematical solution (14) for purposes of practical
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application. Either mathematical analysis or intuitive consideration of inter-
lock shows that the erratic behavior of P is due almost entirely to small changes
in the ratio T/T,. As this ratio passes through certain rational values, possi-
bilities of interlock appear and disappear. Consequently, we next alter (14)
to a form in which the dependence on this ratio is more evident.

We may, without loss of generality, assume:

(15) T =1, T, < 1.

Also introduce the standard notation:

(16) [x] = (largest integer < z).

It will then be seen that (10) and (12) may be thrown into the form:

(17)  k = smallest positive integer such that p; = | ke — i | < w (i = integer);
(18) K = smallest positive integer such that | Ke — I | < w and also

(ke — 1) (Ke — I) < 0 (I = integer);

I

where either

1 1 1 1
(19) e_ﬁ_[ﬁ]’ or e_1+|:7’—2:|_ﬁ'

Now from (9) and (10), we note that s differs from m,T; by at most wT,T,,/2,
while from (11) and (12), d differs from 2,7 by less than the same amount.
Moreover, by the second half of (12), d is thereby made too small if s has been
made too large and vice versa. Hence the use of these approximations in (14)
will contribute an error certainly less than w2T1T2/2. Adding the error dis-
cussed in section 3, the total introduced thus far cannot exceed w*T, T .

We thus use in the present notation s = k,d = K; (13) and (14) then become:

(20) p=p+ |Ke—1|—w
(a) P = Py + wt, fort <k

(21) (b) P = Po+ kw + (¢t — k)p:, fork <t <K
() P=Pi+kw+ (K —kp+ ¢t — K)ps, for K <t

where, as before, P = 1 if (21) gives a value greater than unity. Equations
(17)-(21) are the formulation which will be used, with conditions (15), hence-
forth.

We wish now to smooth P with respect to variations in e. The number-
theoretic requirement (17) is extremely difficult to work with. For reasons of
simplicity, then, we shall assume that e is the only parameter which changes as

2 Note that, even though the periods appear explicitly only in (19) hereafter, all the
following equations are true only for T, = 1. (This is evident if we recall that w has the
dimensions of inverse time.) Thus we are definitely assuming that T'; = constant.



PROBABILITY OF COINCIDENCE 25

T. is varied. The errors which may arise from this assumption are treated at
the end of section 5.

From (19)—or from the absolute value signs in (17), (18)—it will be seen that
all possible situations arise if ¢ varies merely from zero to one-half. In order
that this should entail as little variation in T as possible, our conventions should
be chosen as already stated in (15). Even under these circumstances, a maxi-
mum variation of 339, in T, may be required to cover the range e = 0 to 3.

Equation (21) cannot be used directly without the interpretational convention
there noted. This leads to difficulties of treatment which the author was unable
to solve. The difficulties may be avoided by the following device, which ad-
mittedly has less direct significance than an averaged value for P.

We enquire after the fraction f of the range of ¢ over which P has a value (at
fixed ?) less than some given value @ + P,. We may then say that, if a large
number of trials each of length ¢ is made, then in f of them, the probability of
coincidence will be less than @ 4+ Py.

6. Calculation of f. The exceptional behavior of P is that caused by interlock
possibilities. This corresponds to p1 = 0in (17). Thus the exceptional values
of P center about the points ¢ = %/k, where 4 and k arg relatively prime (other-
wise, £ would not be the smallest integer satisfying (17)). Moreover, by a
standard theorem [1], £ < 1/w. Thus the critical points form the Farey series
of order 1/w in the range (0, 3). About each Farey point, we may suspect that
there will be an interval over which % is constant, and that the entire range may
thereby be divided up into ranges of constant k.

In thinking about the use of (17) in a typical calculation, it is convenient to
eliminate the integer 7 by representing multiples of ¢ as a series of points pro-
gressing around and around a circle of unit circumference. When e = i/k, the
kth multiple will (after 7 revolutions) coincide with the origin; this and the
earlier points, it is easily shown, will be distributed uniformly about the circle
with a separation 1/k.

As ¢ moves away from the Farey point, & will, by definition (17), remain con-
stant until either (a) the point ke moves a distance greater than w from the
origin or (b) an earlier point moves to a distance less than w from the origin
(Fig. 6).

Let (me) be that earlier point nearest (initially 1/4 from) the origin and moving
toward it as ¢ varies in a particular direction. Of course,

(22) m < k.

For each Farey point, there will be two values of m; one for decreasing ¢ and
one for increasing e. If we introduce the new variable: h = the absolute value
of the change in ¢ from the Farey point %/k, then each point, ne, on the reference
circle will move a distance nh, and (17) gives as the conditions for corstant k
(Fig. 7):

(23)

(a) w > kh = p,,
(b) mh < (1/k) — w.
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Thus we have divided the range (0, 1) into small ranges where k (and m) are
fixed. The number of small ranges is roughly twice the number of Farey points
in (0, 3).

Within each small range p1, K, p. still vary with e. The behavior of p, is
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already given in (23a); we shall find that we do not need p,. Using (18) and
Fig. 7, it may easily be shown that:

(24) K =m + jk + Fk,

where

(25) i+ a=QQ"—mkh —kw)/k'h, j=1[], 0<La<l.
From (23a), (24), (25), we obtain:

(26) (K —kp=1—kw — ak’h 0<La<).

Having thus divided the range of e into small regions within each of which the
number-theoretic requirements (17, 18) take a relatively simple form, we must
now turn to the calculation of f = that fraction of the range e = (0, %) over which
P < Py, + Q at fixed t. We shall specialize the further analysis to the case
Q < i. This considerably shortens the discussion and yields essentially all the
useful results of the more general inquiry.

We first note from (21) that, since p; < p; < w (i.e. because of (4)), we have
P < Py + Q independently of e if ¢ < Q/w
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27 f=1, for t < Q/w.

Similar reasoning shows on the other hand that, when ¢ > Q/w, those regions
‘with £ > Q/w do not contribute to f. In the following, we shall there-
fore employ:

(28) F<Qw<t Q=i

Equation (28) implies that we must use either (21b) or (21c); we shall next
show that we do not need (21c). The value of P whenever (21c) is applicable is
certainly greater than (Po + kw + (K — k)p;). From (26), this value is equal to
(Py+ 1 — ak’h). Now from (28),w < 1/2k, whence by (23a) k < 1/2k* < 1/2ak*
(since @ < 1). Thus (Po + 1 — ak®h) > Py + } > Py + Q, and consequently
(21c) never applies until P > Py + Q. (This means merely that the double
overlap discussed in section 3 cannot occur until at least half the torus is covered.)
Accordingly, we can confine our attention entirely to (21b) in any further dis-
cussion of f.

W~y
ke

Figc. 7

Substituting for p; from (23) and recalling that (¢ — k) is positive (by (28)),
we find from (21b) that the condition P < P, 4+ Q becomes:

Q — kw
(29) h<m.

However, h is subject also to the restrictions (23), which insure that we do not
stray from the small region where k is constant. We assert that (29) implies
(23) and may therefore be used as the final expression of the requirement
P < P+ Q.

To prove this, note first that (29) and (28) immediately give b < w/k, which
is (23a). Secondly, (28) implies 1/k > 2w so that, using (23a) and (22):
(1/k) — w > w > kh > mh, which is (23b).

Thus we arrive at the result that f receives contributions only from those
elementary regions where k satisfies (28) and that the contribution of each such
region is governed by (29).

Since the variable h was defined as the absolute value of the change of e from
the Farey point ¢/k, each Farey point (satisfying (28)) contributes an amount
equal to twice® the right-hand side of (29). Since this amount is independent

3 This is not true of the Farey points 0 and %, the ends of the range of e, but the terms
k =1,2in (31) correctly account for these contributions since ¢(1) = ¢(2) = 1.
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of 7, we may immediately sum over all Farey points ¢/k with fixed k. There
are 3¢(k) such points® in the range (0, ), where Euler’s function ¢ is defined by:

(30) ¢(k) = the number of integers < k and relatively prime to k.

(Note that ¢(k) is even for k > 3 since if * and ¢ have no common divisor?> 1,
neither do k and k — 3.)

Thus, summing over all these contributions and dividing by the length of the
total range:

Q — kw

(31) f=2 lﬂglw o(k) L for t > Q/w.

Regarding error in (31) due to the inaccuracy of (21), note that this can enter
only when we set P = Py + @ in deriving (29). Actually the difference between
(21b) and the correct value of P will change as e is changed so that there is con-
siderable possibility that these effects will cancel out in (31). (In fact, a de-
tailed study shows that the error in (21b) assumes opposite signs as e varies in
opposite directions from any given Fareyv point.) In any case, because (31) is
monotone in @, the error in (31) can be no greater than that found by substi-
tuting Q@ == w’T T for Q. Taking account also of the variation of P, with T,,
the same argument establishes the “@-dependence’ of (6) given in section 2.

Finally, we investigate the error due to change in w with T.. If @ is the maxi-
mum value of w, Farey points with k¢ < @Q/% are certain to contribute to f, and
this contribution will be at least as great as (@ — kw)/k(1 — k) so that f > f(m).
On the other hand, if w is the minimum value of w, Farey points with k > Q/w
cannot possibly contribute to f, and the remaining points can contribute no
more than (Q — kw)/k(t — k) so that f < f(u). Hence we arrive at the final
statement (6) in section 2.

6. Approximations for f. Computational difficulties in the use of (31) sug-
gested approximating it by a more readily computed expression. By a standard
theorem [1, p. 266]:

(32) o(k) = Ok/x".
We may then approximate (31) by:

(Q/w)+} I
f=1216 f Q- kv

L=k
_ w— Q@ w— @ — %w)
= 1.216 Q (1 + 0 log o — Tw .
If Q/w is large compared to 3 (recall £ > Q/w), this becomes very nearly:
(33) f=1216Q (1 + (g—" - 1> log < - z%)) for t > Q/w.

Despite the cavalier derivation of (33), its agreement with (31) is remarkably
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close. Fig. 2 shows a perfectly general comparison of (31) and (33), where the
agreement will be seen to be fairly good even for t and Q/w of the order of 4 or 5.
Note also that (33) nearly always gives a value of f that is too large.

For completeness, we may repeat (27).

(34) f=1 for t < Q/w.

Note that only the dimensionless quantities tw, @ enter into (33, 34) which are
therefore independent of the normalization (15).
REFERENCE

[1) G. H. Harpy anDp E. M. WrigHT, An Introduction to the Theory of Numbers, Clarendon
Press, Oxford, 1938, p. 30.



