ON THE DETERMINATION OF OPTIMUM PROBABILITIES
IN SAMPLING
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1. Summary. In a previous paper [2] it was shown that it is sometimes
profitable to select sampling units with probability proportionate to size of the
unit. This note indicates a method of determining the probabilities of selection
which minimize the variance of the sample estimate at a fixed cost. Some ap-
proximations that have practical applications are given.

2. Introduction. Neyman has shown that it is possible to reduce the sampling
variance of an estimate by dividing a population into sub-populations (called
strata) and varying the proportions of units included in the sample from stratum
to stratum [1]. His treatment presumed that the units within any stratum would
be drawn with equal probability. In many practical sampling problems, the use
of constant probabilities is neither necessary nor desirable. Not only is it possible
to obtain unbiased or consistent estimates with varying probabilities of selection
of the sampling units, but also it is possible to reduce the variance of sample
estimates by appropriate use of this device.

It has been shown [2] that in a subsampling system, the selection of primary
units with probabilities proportionate to the number of elements included in the
primary unit may bring about marked reductions in sampling variances over
sampling with equal probabilities. In this note, we shall indicate a method of
determining the optimum probabilities under certain conditions, and also some
approximations to the optima that have practical applications.

By optimum probabilities, we mean the set of probabilities of selection that
will minimize the variance for a fixed cost of obtaining sample results, or alterna-
tively that will minimize the cost for a fixed sampling error.

3. Optimum probability with a subsampling system. Consider, for example,
the simple subsampling system where primary units are first drawn for inclusion
in the sample and then a sample of elements is drawn from the selected primary
units. We shall suppose, for simplicity of notation, that the sampling is done with-
out stratification. The conclusions indicated below will be similar if stratified
sampling is used, and they will hold even if only one unit is drawn from each
stratum. Suppose that a population contains M primary units, and that the
sampling of primary units is to be done with replacement. Sampling with re-
placement is assumed in order to simplify the mathematics. We wish to estimate
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where X;; and Y;; are the values of two characteristics of the jth element within
the ¢th primary unit, and N, is the number of elements in the ¢th primary unit.
A consistent estimate of X/Y is given by
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where
P; = The probability of selecting the ¢th primary unit on a single draw.
n; = The total number of elements included in the sample from the 7th unit
if it is drawn. If a particular unit happens to be included in the sample
more than once the subsampling will be independently carried through
each time it is drawn.

m = The total number of primary units included in the sample.

It will be assumed that a self-weighting sample is to be used, i.e., that although
the probabilities of selecting primary units will vary, the subsampling rate
within the 7th selected primary unit, % , will be such that P;% = k. Note that,
with this condition, & is the probability that an element will be included in the
sample by making a single draw of a primary unit, and by carrying out the speci-
fied subsampling within the selected primary unit. It follows that mkN is the
expected total number of elements included in a sample of primary units, where

The method can be extended to cover situations where other conditions are im-
posed.

We shall express the variance of r in terms of P;, m, and %, and also express
the cost in terms of these same quantities. The optimum values of P;, m, and k
will then be determined.

The variance of the sample estimate. To terms of order 1/m of the Taylor ex-
pansion of a ratio, the sampling variance of the estimate (1) is approximately
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The cost function. Now suppose that the total cost of the sampling procedure
involves a fixed cost attached to each primary unit included in the sample, a
cost of listing the elements within each selected primary unit (this listing may be
necessary in order to draw a subsample), and a cost of obtaining information from
each of the elements selected for inclusion in the sample. Under these circum-
stances the total expected cost of the survey will be:

M
(3) C=Cm+ Com Y, P;N; + CamkN

=1
where

C, = The fixed cost per primary unit,

C» = The cost of listing one element in a selected primary unit and other
costs that vary with the number of elements to be listed,

C3 = The cost of obtaining the required information from one element in
the sample,

> PN,
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Il

Expected number of elements in the sample per primary unit in
the sample,
mk = The over-all sampling ratio, and

M
N = D N, = The total number of elements in the population.

=1
It will be noted that although the values of P; and m may be fixed in advance,
n
the number of elements to be listed, D N, remains a chance variable. It is for
=1

this reason that we consider the expected cost rather than the actual cost.
The optimum values of P;, m, and k. The values of P;, m, and k which min-
imize the variance (2) subject to the conditions that:

M
C is fixed, S~ P =k, > Pi=1,
N: =1
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are given by
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Ordinarily 8; will be positive although it will often be found to be negative for
some ¢. For a great many populations, such negative values can be avoided by
classifying the primary units into size groups or other significant groups and then
requiring that the probability of selection be P, for every primary unit in the
a-th group.

In actual practice, however, in advance of designing a sample one does not
have the data to compute the optima and uses methods of approximating the
optimum probabilities. Methods of approximating the optimum probabilities are
given below.

4, Some rules for approximating the optimum probabilities. In another
paper [2] considerations were presented from which it follows that é; tends to
decrease with increasing size of unit, but seldom as fast as the size of unit in-
creases. The rate of decrease is often small relative to the increase in N;, and
empirical data for a number of problems indicate that even the assumption of
8; being fairly constant with increasing size of unit may not lead one far astray
from the optimum probabilities. Under this assumption (8; = & for all ¢) the
probabilities depend only on N;, Cy, and C;, and lead to the following results:

(a) When C; > 0 and C; = 0, probability proportionate to size will be the

optimum.

(b) When C; = 0 and C: > 0, probability proportionate to the square root

of the size will be the optimum.
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If we go to the other extreme (extreme not in terms of mathematically possible
values but in terms of most practical populations), and assume that §; decreases
at the same rate that N, increases, the results would be:

(a) When C; > 0 and C: = 0, probability proportionate to the square root

of the size will be the optimum.

(b) When C; = 0 and C, > 0, equal probability will be the optimum.

The minimum is broad in the neighborhood of the optimum and the results for
either of these extremes and the values in between often will give results reason-
ably close to the minimum. This leads to the following useful approximations:

(a) When C; ZP;N;, the expected cost per primary unit of listing and related
operations, is small in relation to C}, the fixed cost per primary unit, the
optimum probabilities will be between probability proportionate to size
and probability proportionate to the square root of size, and either of these
will be reasonably close to the optimum.

(b) When C is small compared to C,2P;N;, the optimum probability will be
between equal probability and probability proportionate to the square root
of size, and either of these will be reasonably close to the optimum.

(¢) When both C; and C:ZP;N; are of significant size, i.e., when the costs
vary substantially both with the number of primary units in the sample
and the size of the units, then probability proportionate to the square root
of the size will be a reasonably good approximation to the optimum.

(d) When units of small size are used and all of the subunits in the selected
primary units are included in the sample (that is, there is no subsampling)
equal probability is close to the optimum. It should be noted that this
rule does not follow directly from the above analysis based on subsampling,
but from a separate analysis in which no subsampling is involved.

For whatever system of probabilities is used, and with the cost function given

by (3), the optimum value of k is given by:
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which can be approximated, in application, from prior experience or preliminary
studies. The corresponding optimum value for m is obtained by substitution in
the cost function. '

The above results should not be accepted, of course, as the optima for every
cost function or every sampling system. Either past experimental data may be
available or pilot tests made to determine the cost function and the appropriate
approximations that should be used in various practical situations.

An dllustration. An illustration may be of interest. A characteristic pub-
lished for city blocks in the 1940 Census of Housing is the number of dwelling
units that are in need of major repairs or that lack a private bath. Suppose we
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were sampling to estimate the proportion of the dwelling units having this char-
acteristic for the Bronx in New York City, at the time of the 1940 Census. Let
us assume that once we selected a system of probabilities we used the optimum
numbers of blocks and the optimum sampling ratios appropriate to these proba-
bilities, that is, the optimum values of ¥ and m. For each of several cost func-
tions the following Table 1 shows the sampling variances of each system, rela-

TABLE 1
A t i it of . .

Unit costs Yiﬁ??fg 23?% é‘?j%{%:(fi:?ggagﬁ);so Varmnc‘:;;g?&ﬁ:yto equal

Probability| Proba- Probability| Proba-

Equal propor- bility Equal propor- bility

C: C: C; roba- tionate propor- proba- tionate propor-

ility to square tionate bility to square | tionate

root of size| to size root of size | to size
5 .10 1 13.49 21.15 27.63 100 92 104
5 .05 1 6.75 10.58 13.82 100 88 97
5 .02 1 2.70 4.23 5.53 100 83 87
5 01 0 0 0 100 75 73
2 .10 1 13.49 21.15 27.63 100 96 111
2 .05 1 6.75 10.58 13.82 100 93 106
2 .02 1 2.70 4.23 5.53 100 90 97
2 01 0 0 0 100 79 77
1 .10 1 13 .f19 21.15 27.63 100 97 114
1 .05 1 6.75 10.58 13.82 100 96 110
1 .02 1 2.70 4.23 5.53 100 93 103
1 0 1 0 0 0 100 82 81
0 .10 1 13.49 21.15 27.63 100 99 117
0 .05 1 6.75 10.58 13.82 100 99 115
0 .02 1 2.70 4.23 5.53 100 99 113

tive to the variance of sampling with equal probability. It also shows values of
C22P;N; for comparison with C; .

Some of the costs given in the table do not have unreasonable relationships
in terms of the situations encountered in practice in various types of jobs. The
comparisons are not affected by the absolute magnitudes of the costs but only
by their relative magnitudes. The results are consistent with the rough rules of
thumb given above. It is worth noting that in each of the above instances prob-
ability proportionate to the square root of the size yields a comparatively low
variance.
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6. Sampling with or without replacement. In this paper the sampling with
varying probabilities was assumed to be carried out with replacement which
ordinarily would not be advisable in practice. When sampling is done without
replacement the optimum probabilities and their approximations will be about
the same as for sampling with replacement in at least those instances where the
proportion of the population in the sample is small. Further investigation is
needed for large sampling rates.

6. Conclusion. In summary, it is not essential and may not be desirable to
give each element in the population (or stratum) the same chance of being drawn
in order to avoid bias or to have a consistent estimate. Estimate (1) is a con-
sistent estimate no matter what probabilities of selection are assigned to these
units. The use of variable probabilities of selection is another device to be added
to those already in the literature, such as stratification and efficient methods of
estimation, which make it possible to achieve the objectives of a sample survey
at reduced costs. Reference [2] gives another illustration of reductions in sampling
variance achieved through the use of varying probabilities in accordance with
the rules suggested above for approximating the optimum probabilities.
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