SMOOTHEST APPROXIMATION FORMULAS

By Arthur Sard¹

Queens College

Introduction. Consider a process of approximation which operates on a function x = x(t). The error in the process may be thought of as a sum $R + \delta A$, where R is the error that would be present if x were exact and δA is the error due to errors in x. (Precise definitions are given below.) Suppose that one wishes to choose one process A from a class C of processes. In some situations it is appropriate to base the choice on C alone; in others it is appropriate to consider C and C in others it is appropriate to consider C in others it is appropriate to consider C in others it is appropriate to consider C in others.

The primary purpose of the present note is to formulate a criterion of smoothest approximation: That A in \mathcal{C} is smoothest which minimizes the variance of δA . A criterion based on both R and δA is also suggested. (Sections 1 and 2.) Smoothest approximate integration formulas of one type are derived in Section 3.

Progress in the technique of estimating the covariance function of the errors in x will lead to further applications of the criterion of smoothest approximation.

1. Approximation of a functional. Suppose that X is a space of functions x = x(t) each of which is continuous on $a \le t \le b$. Let f[x] be a functional defined on X; that is, f[x] is a real number defined for each $x \in X$. For example, X might be the space of functions with second derivatives on [a, b] and f[x] might be x''(u), where u is a fixed number in [a, b].

Suppose that f[x] is to be approximated by a Stieltjes integral

(1)
$$A = \int_a^b x(t) d\alpha(t), \qquad x \in X,$$

where α is a function of bounded variation. The remainder in the approximation of f[x] by A is

$$R = A - f[x].$$

If the approximation (1) operates on $x + \delta x$ instead of x, the result is $A + \delta A = \int_{t-a}^{b} (x + \delta x) d\alpha$; and the error in the approximation of f[x] by $A + \delta A$ is $R + \delta A$, where

(2)
$$\delta A = \int_a^b \delta x(t) \ d\alpha(t).$$

Consider a class \mathcal{C} of approximations A, each of the form (1). We shall propose a criterion for characterizing the "smoothest A" in \mathcal{C} , relative to the covariance function of the errors δx .

¹ The author gratefully acknowledges financial support received from the Office of Naval Research.

² "Best approximate integration formulas; best approximation formulas," Amer. Jour. of Math., Vol. 71 (1949), pp. 80-91.

Assume that $\delta x = \delta x(t)$ is a stochastic process with mean zero³ and covariance function $\sigma(t, u) = E[\delta x(t)\delta x(u)]$. Then, by (2), δA is a stochastic variable; and⁴

$$E\delta A = E \int_{t=a}^{b} \delta x \, d\alpha = \int_{t=a}^{b} 0 \, d\alpha = 0,$$

$$(3) \qquad E(\delta A)^{2} = v = E \left[\int_{a}^{b} \delta x(t) \, d\alpha(t) \int_{a}^{b} \delta x(u) \, d\alpha(u) \right] = \int_{a}^{b} \int_{a}^{b} \sigma(t, u) \, d\alpha(t) \, d\alpha(u).$$

CRITERION. That A (if any) in \mathfrak{A} is smoothest which minimizes the variance v of δA .

In particular cases, this criterion (least squares) has been proposed and used by Chebyshev and others. An application to approximate integration is given in section 3 below.

One may extend this discussion to cases in which the approximations A involve derivatives of x.

Remark. The criterion of best approximation² may be combined with the above criterion of smoothest approximation as follows: That A (if any) in G is the best compromise which minimizes a specified combination of the variance of δA and the modulus of R. Here it is assumed that the remainders R satisfy the conditions for the existence of the modulus.²

2. Approximation of a function. One may extend the preceding discussion to the case in which y = f[x] is an operation to a space of functions $y = y(u) \cdot \bar{a} \le u \le \bar{b}$; and in which the approximation of f[x] is

$$A = \int_a^b x(t) d_t \alpha(t, u), \qquad x \in X,$$

where, for each u, α is a function of bounded variation in t. Then, for each u, δA has a variance v(u). Criterion. That A (if any) in a class of approximations is smoothest which minimizes v(u) for all u; failing such an A, that A (if any) is smoothest which minimizes the integral of v(u), or alternatively, the supremum of v(u), over $\bar{a} \leq u \leq \bar{b}$.

3. Smoothest approximate integration formulas in a particular case.⁵ Let m and n be fixed integers; $m \ge 1$, $n \ge 0$. Let $\mathcal{C} = \mathcal{C}_{m,n}$ be the class of all approximations of

³ The essential point here is that $E\delta(t) = m(t)$ be known for each t; for given m(t), one could and would replace $x + \delta x$ by $x + \delta x - m$.

⁴ We assume here that the integrals in (3) exist and that the inversions of E and $\int d\alpha$ are valid. For this it is sufficient that δx be integrable relative to the product measure $\alpha\omega$ for all functions α corresponding to elements of C, where ω is the measure in the underlying probability space relative to which E is the operator $\int d\omega$. Cf. J. L. Doob, "Probability in function space," Bull. Amer. Math. Soc., Vol. 53 (1947), especially pp. 26, 27.

⁵ The approximate integration formulas of this section are of such a nature that one would expect them to be known. The values of J at the end are probably new.

$$\int_{-m/2}^{m/2} x(t) \ dt = f[x]$$

of the form

$$A = \sum_{i=-m/2}^{m/2} b_i x(i),$$

the m+1 constants b_i being such that A=f[x] whenever x(t) is a polynomial of degree n. Throughout this section i is to range over the m+1 values i=-m/2, -m/2+1, \cdots , +m/2. Suppose that the errors $\delta x(i)$ are independent, with common variance σ^2 , and with mean zero. Then $\alpha(t)$ is a step function with jumps b_i at t=i; and

$$v = \sigma^2 \sum_i b_i^2.$$

The smoothest approximation in $\mathcal{C}_{m,n}$ is the one for which v is a minimum. (The m+1 variables b_i in v are subject to n+1 constraints due to the condition that the approximation be exact for degree n. The set $\mathcal{C}_{m,n}$ is empty if and only if m is less than the largest even integer contained in n.)

If n = 0 or 1, the smoothest formula in $\mathcal{C}_{m,n}$ is the one for which all the coefficients are equal:

$$b_i = m/(m+1);$$

in which case

$$v = m^2 \sigma^2/(m+1).$$

If n = 2 or 3, the smoothest formula in $\mathcal{C}_{m,n}$ is characterized by the following relations:

$$b_i = \lambda_0 + i^2 \lambda_1$$
,
 $\lambda_0 = m(2m^2 + 9m - 6)/2(m - 1)(m + 1)(m + 3)$,
 $\lambda_1 = -30m/(m - 1)(m + 1)(m + 2)(m + 3)$;

in which case

$$v/\sigma^2 = \lambda_0 m + \lambda_1 m^3/12.$$

Thus, the smoothest approximation in $\mathcal{C}_{6,2}$ or in $\mathcal{C}_{6,3}$ is the following:

$$A = \frac{1}{2}[x(-3) + x(3)] + \frac{6}{7}[x(-2) + x(2)] + \frac{15}{14}[x(-1) + x(1)] + \frac{8}{7}x(0).$$

By the method of Lagrange's multipliers, one may establish the following relations for the smoothest formula in $\mathcal{C}_{m,n}$. Here i has the same range of values as before; μ and ν range over 0, 1, \cdots , $\lfloor n/2 \rfloor$.

$$b_i = \sum_{\mu} \lambda_{\mu} i^{2\mu},$$

$$v/\sigma^2 = \sum_{\mu} \lambda_{\mu} c_{\mu} ,$$

where

$$c_{\mu} = m^{2\mu+1}/4^{\mu}(2\mu + 1),$$

and λ_{μ} are determined by the equations

$$\sum_{\mu} \lambda_{\mu} \sum_{i} i^{2(\mu+\nu)} = c_{\nu}.$$

The class $\mathcal{C}_{m,n}$ is such that for each $A \in \mathcal{C}_{m,n}$ there is a function k(t) with the following property:²

$$R = A - f[x] = \int_{-m/2}^{m/2} x^{(n+1)}(t)k(t) dt,$$

whenever x is a function with continuous (n + 1)th derivative. The quantity

$$J = \int_{-m/2}^{m/2} k^2(t) \ dt$$

is useful in appraising R, since

$$R^{2} \leq J \int_{-m/2}^{m/2} x^{(n+1)}(t)^{2} dt,$$

by Schwarz's inequality.

Values of J for the smoothest formulas are as follows.

$$n = 0: J = m^2/6(m+1).$$

 $n = 1: J = m^2(3m^2 + 2m + 1)/360(m+1).$

For n = 2 and 3, and $m \le 6$, the numerical values of J are as follows.

m	$oldsymbol{J}$	J
	(n=2).	(n=3).
2	1/1,890	1/9,072
3	11/8,960	13/17,920
4	134/33,075	62,539/13,891,500
5	1,865/150,528	136,223/6,322,176
6	8/245	6,683/82,320

For the method of calculation of J, as well as the transformation of J under a linear transformation of t, the reader may consult the paper².