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1. Summary. In this paper the simultaneous distribution of midrange and
semi-range has been obtained and used to derive the distributions of midrange
and semi-range in samples taken from a normal population.

2. Introduction. The concept of ordering a sample has given rise to innumer-
able problems for statistical investigation. Several authors have contributed to
the study of ordered individuals and, in particular, to the study of extreme indi-
viduals, their sum and difference in samples from a normal population. L. H. C.
Tippett [1] has studied the first four moments of the range and has tabled the
mean-range for sample size ranging from two to thousand. Student [2] has
determined the nature of the distribution of range for particular sample sizes
by purely empirical methods. T. Hojo [3] has compared the standard error of
midrange to that of median and mean in normal samples. E. S. Pearson and
H. O. Hartley [4] have tabled the values of the probability integral of range
for sample size up to twenty. E. J. Gumbel [5], [6], [7] has established the inde-
pendence of the extreme values in large samples from population of unlimited
range and obtained the distributions of range and midrange. The asymptotic
distribution of range has also been investigated by G. Elfving [8]. J. F. Daly [9]
has devised a i-test adopting range in place of standard deviation in Student’s ¢
and in a modified ¢-test E. Lord [10] has used range instead of standard devia-
tion. An extension to two populations of an analogue of Student’s ¢-test using the
sample range has been worked out by John E. Walsh [11]. 8. 8. Wilks [12] has
given a complete and detailed account of the researches on order statistics and
also a number of suggestions regarding possibilities of utilising order statistics
in statistical inference. In this paper the distribution of midrange has been
developed as a series and a method of evaluating the probability integral for
semi-range based on an infinite series expansion for the normal probability
integral has been suggested.

3. Distributions of midrange and semi-range. Let

2 <2 < Tn

be an ordered sample from a normal population with zero mean and unit stand-
ard deviation. Then the joint distribution of z; and z, , the lowest and highest
values respectively, is given by [13],
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n—2

® P(x1, 2a) = [n(n — 1)/27r][ f - P dt/\/zTr:l P Ly

Let

M= (2 + x.)/2
and

W = (xn — 21)/2.

M is the midrange and W is the semi-range of the sample. From (1) the simul-
taneous distribution of M and W reduces to

M+W n—-2
@ 901, W) = i - Dm0 [Ty ]
It has been shown [14] that if
M+Ww 2
@3) F(M, W) = [ fu_w e dt/\/zTr]

(4) F(M, W) = C—k(M’+W’)/2[A8k) + Aik)Mz 4o A?"M“ + e,
where A{¥ coefficient is given by
- 24® = kA®, — kNI ALW .

+ AEWYT@) + - +AFOWEY/ 0]

Using expansion (4) equation (2) reduces to

k
’

(6) p(M, W) = [n(n — 1)/xle "MFFDE " 4= g2
=0

It is evident that the A’s involve terms of the form
W)W

where s, ¢, m are positive integers and
w
o00) = Vo/x [
0

Integrating (6) with respect to W

@) p(M) = [n(n — 1)/xle ™ é B:M*
where
€)) By = V72 I(n — 2,0,2),

By = [(n — 2)/2T@NV372 (n — DItn — 2,0,2)
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(10) ~(2n — 5)I(n —3,1,3) — (1/3)I(n — 3,3, 3)

+ V2/x (n — 3)I(n — 4,2, 4)]
where
(11) 1(s, ¢, m) = \/2/x [" @] 27 ™ d,

Using the method of integration by parts, the evaluation of I(s, ¢, m) can be
reduced ultimately to that of I(p, 0, r) and this function for different values

of p and r is given in Table I.

TABLE I
Values of Integrals I(p, 0, r)*
r
P
2 4 6 8

1 0.277,063,21 | 0.147,583,62 | 0.100,735,97 | 0.076,490,19
2 0.152,980,4 0.064,094,20 | 0.037,255,93 | 0.025,060,53
3 0.098,373 0.033,453,6 0.016,808,71
4 0.069,10 0.019,535,1 0.008,589,57
5 0.051,44 0.012,325,5
6 0.039,90 0.008,223,9
7 0.031,94
8 0.026,17

The first five B Coefficients for n ranging from 3 to 10 are tabled below.

TABLE II
Values of B Coefficients.

n Bo B B, B; B,

3 0.347,247,25/0.040,642,87/0.002,772,90(0 .000, 133,800 .000,005,00
4 0.191,732 10.058,751 |0.010,906 (0.001,460 |0.00G,153
5 0.123,292 |0.067,184 [0.021,526 |0.004,988 |0.000,909
6 0.086,60 0.070,93 0.033,23 0.011,20 0.002,97
7 0.064,47 0.072,20 0.045,65 0.020,28 0.007,14
8 0.050,01 0.072,09 -~ |0.057,22 0.032,21 0.014,59
9 0.040,03 0.071,27 0.068,95 0.047,01 0.024,98
10 0.032,80 0.069,97 0.080,31 0.064,66 0.040,51

1 The integrals have been evaluated by using (14).
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The accuracy obtained by keeping the first five terms in p(M) may be judged
from the following values of the total probability calculated for small values
of n. ’

TABLE III.
Total probability keeping the first five terms in p(M)
Size of sample 3 4 5 6 7

Total probability | 0.999,998 | 0.999,92 | 0.999,56 | 0.998,8 | 0.997,8

Integrating (6) with respect to M, p(W) may be obtained. But p(W) in-
volves integral ¢(W) and to evaluate the integral probability of W expansions
for ¢(W) and its powers have to be developed.

w
Since (W) = V/3/x [o G = /AW (L — W6 + --),
a convenient expansion is given by
w .
(12) 2/1:"[; et dt = \/2/—1|-We'w”°(1 + Wt o a W)

where a; follows the recurrence relation
(13) 32 + 1)a; — aiy = (—1)7/37'TG + 1),

as may be seen by differentiating (12) with respect to W and equating the coeffi-
cient of W** on both sides. Again

(14) bW = (2/x) "% ™ WS’

where

(15) S=1+aW+aW+- - +aW + ...
and

(16) 8 =1+ KW + KPW* + - -

where

(17) K{? = Z‘{ iC,slaftas? - al/sylsy! - 8!

and

st 28+ oo +dsi =1,
at s+ -+ s=s

Clearly a; = K{’. In evaluating the K{”’s summation with respect to s is first

(17a)
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performed, the values of s;, sz, - - - , 8; being obtained so as to satisfy the rela-
tions (17a); and thereafter the values of the a’s are substituted. It may be noted
that a; = 0. The K coefficients for j up to 8 and 7 up to 13 are given below.

TABLE IV
K@ Coeflicients.
X )
J
2 3 4 5
1 |0.011,111,11 | —0.0°35,273,369 | 0.0¢44,091,711 | —0.0°17,814,833
2 |0.022,222,22 | —0.0%70,546,737 | 0.0%21,164,021 | —0.0*11,401,493
3 | 0.033,333,33 | —0.0210,582,011 | 0.0850,264,550 | —0.028,860,029
4 | 0.044,444,44 | —0.0%14,109,348 | 0.0°91,710,758 | —0.0%54,157,091
5 | 0.055,555,56 | —0.0217,636,684 | 0.0214,550,265 | —0.087,292,680
6 | 0.066,666,67 | —0.0221,164,021 | 0.0221,164,021 | —0.0°12,826,680
7 10.077,777,78 | —0.0224,691,358 | 0.0229,012,346 | —0.0%17,707,944
8 | 0.088,888,89 | —0.0228,218,695 | 0.0238,095,238 | —0.0°23,373,061
)
i
6 7 8 9

1 | 0.0610,087,459 | —0.0%38,065,882 | 0.0°14,772,299 | —0.0147,770,889
2 |0.0%13,059,860 | —0.0778,306,957 | 0.0%57,379,607 | —0.0° 32,240,604
3 | 0.0°49,870,764 | —0.0%35,414,321 | 0.0737,246,865 | —0.08 26,934,251
4 |0.0412,515,888 | —0.0%96,195,746 | 0.0°13,039,809 | —0.07 10,793,811
5 | 0.025,264,163 | —0.0%20,323,918 | 0.0%33,614,797 | —0.07 30,234,979
6 | 0.0%44,603,642 | —0.0536,960,883 | 0.0672,070,037 | —0.07 68,563,784
7 10.0%71,905,926 | —0.0%0,836,892 | 0.0°13,654,992 | —0.0° 13,526,252
8 | 0.0°10,854,319 | —0.0%93,258,365 | 0.0%23,672,301 | —0.0°24,174,891

.

10 11 12 13

00O Ot W -

0.0%14,640,444
0.0"18,330,114
0.0°21,506,514
0.0%10,849,591

1 0.0° 36,260,639
| 0.0095,002,297
0.07 21,247,442

0.07 42,365,199

—0.0140,268,872
—0.091,351,579
—0.014,469,203
—0.0187,178,260
—0.0°32,719,538
—0.0°93,120,388
—0.0%22,112,968

—0.0% 46,218,579

0.0%10,359,029
0.0%43,595,840
0.0196,661,910
0.0172,767,557
0.0%32,219,900
0.0°10,472,881
0.0° 27,825,332
0.0°64,147,144

—0.0""24,535,539
—0.0"19,132,452
-0.0%58,727,628
—0.0'254,213,617
—0.0"27,049,719
—0.0196,020,717
—0.0%27,369,553
—0.0%66,862,484
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Using (12) the probability integral for W can be evaluated with the help of
tables of Incomplete Gamma Functions.
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