COMPLETENESS IN THE SEQUENTIAL CASE

By E. L. LEEMANN AND CHARLES STEIN
Unaversity of California, Berkeley

1. Summary. Recently, in a series of papers, Girshick, Mosteller, Savage and
Wolfowitz have considered the uniqueness of unbiased estimates depending only
on an appropriate sufficient statistic for sequential sampling schemes of binomial
variables. A complete solution was obtained under the restriction to bounded
estimates. This work, which has immediate consequences with respect to the
existence of unbiased estimates with uniformly minimum variance, is extended
here in two directions. A general necessary condition for uniqueness is found,
and this is applied to obtain a complete solution of the uniqueness problem when
the random variables have a Poisson or rectangular distribution. Necessary
and sufficient conditions are also found in the binomial case without the restric-
tion to bounded estimates. This permits the statement of a somewhat stronger
optimum property for the estimates, and is applicable to the estimation of
unbounded functions of the unknown probability.

2. Introduction. The notions of completeness and bounded completeness of
a family of distributions were introduced in [1, 2] in connection with the prob-
lems of similar regions and unbiased estimation. The question of whether either
of these two properties pertains to various families of distributions that are of
interest in statistics was discussed in [2] under the assumption of fixed sample
size. The only sequential problems of this kind that have been treated in the
literature (with quite different terminology) refer to the binomial case. For
this case Girshick, Mosteller and Savage [3] found necessary (and also certain
sufficient) conditions on the sequential sampling scheme for completeness, while
Wolfowitz [4] and Savage [5] gave necessary and sufficient conditions for bounded
completeness.

If T is a random variable distributed over an additive class of sets in some
space according to a distribution P; with 6 in some set w, then the family
PT = {Pj | 6 € w} of possible distributions of T is said to be complete if

1) f fO dPF@) = 0, forall few,
implies
() f&) =0, ae 9P,

that is, for all ¢ except possibly in a set N for which Pj(N) = 0 for all 6 € .
The family P” is said to be boundedly complete if this implication holds under
the assumption that f is bounded.
The relation of these concepts to the problem of unbiased estimation is an
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immediate consequence of a theorem of Blackwell [6]. Let X be a random vari-
able with distribution Pj , 6 € w, and let T be a sufficient statistic for 6. Denote
by Pj the distribution of T, and suppose that 9 is complete. Then every func-
tion g(6) for which there exists an unbiased estimate, that is, a function ¢ such
that

E; ¢(X) = g(0), for all 6 ew,

possesses an unbiased estimate with uniformly minimum variance. One can say
furthermore that if ¢(X) is any unbiased or bounded unbiased estimate of g(6),
then the optimum estimate guaranteed by the above statements is the condi-
fional espectation of ¢(X) given T.

The aim of the present paper is to obtain certain results concerning complete-
ness in sequential sampling schemes. Some necessary conditions for complete-
ness are given in section 3, and these are used to obtain necessary and sufficient
conditions for completeness when the random variable being sampled has a
Poisson or rectangular distribution. In section 4 it is shown that certain neces-
sary conditions given in [3] for the binomial case are also sufficient.

3. A necessary condition for completeness. The sequential sampling schemes
with which we are concerned are of the following nature. There is given a sequence
of real valued random variables X, , X, - - - with a joint distribution depending
on a real parameter 6, which ranges over a set w. We shall assume that for
each m the set of variables X, , - -+ , X,, admits a real valued sufficient statistic
Tw = tn(X1, -+, Xm) for 6, and that for each m the family ™ of distribu-
tions of T, is complete. We next suppose that there is given a stopping rule,
which is such that after m observations have been taken, the decision of whether
or not to take an m-1st observation depends only on the value of
tm(X1, -+, Xn). It follows (see [6]) that if the total number of observationsisn
(a random variable which may be infinite), then (T, , n) is a sufficient statistic
for 6. We shall say that the sequential procedure is complete if the family of
distributions of (T,, n) is complete. Throughout, we shall assume that all
sequential procedures in question are closed, i.e. that for each 6 ¢ w, n is finite
with probability 1.

Let Y be a random variable distributed over a Euclidean space according to
a distribution P with 6 in w. We shall say that a point y lies in the positive
sample space of Y if there exists 6 ¢ w such that every open set containing y
has positive probability for this 6, and that y is an impossible point if it lies in
the complement of the positive sample space. Consider now a sequential sampling
scheme as described above. For any integers m < p we shall denote by W', the
positive sample space of T, given the first m steps of the stopping rule, that is,
given for 7 = 1, - -+ , m the set S; of values of T'; for which sampling is discon-
tinued after the ith observation. Since all the T’s are real valued, the sets W7
are sets of real numbers satisfying the obvious condition W5 ' = W7 . The
union U 8, (S is the set of points of W= for which no m-+1st observation is
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taken) will be called the set of stopping or boundary points, the points belonging
to some Wi ' — S, are the continuation points.

We need the following

LEMMA 1. A necessary condition for a sequential procedure of the type described
above to be complete is that every procedure obtained from the given one by trunca-
tion be complete.!

This is an immediate consequence of the following more general

LemMa 2. Let X1, Xa, -+ be as before a sequence of random variables such
that for each m the set Xy, -+, Xn admits a real valued sufficient statistic
Tw=1tau(X1, -+, Xn). Let 1, 2y, -+, =, each be a complete, closed, sequential
procedure based on these sufficient statistics. Let Z,uU 25U - - - U Z, denote the sequen-
tial procedure according to which we continue taking observations until at least one
of the stopping rules Z; , - - - , =, tells us to stop. Then the procedure Z,u - - u Z,
s complete.

This clearly implies Lemma 1. For if one takes for =, any closed, complete
sequential procedure and for I, a procedure of fixed sample size, then Z; u Z,
is the associated truncated procedure.

Proor or LeEmma 2. It is sufficient to prove the result for the case r = 2.

Let n , n2, n denote the number of observations taken under 2, 2, Z;u =2
respectively. Then n = ny if ny < ne, n = ne if ny = n. . Let f be any function
on 2 u 2 such that

Esf(T,,n) =0 forall few.
Then

EyE[f(Tn,n) | Tay, m] = 01
for all 6ew.

Ey E[f(Tn ) n) l T"z ’ n2] = OJ
Since Z; and Z, are complete it follows that
Elf(Ta,n) | To, = tiyms = vi] = E[f(Tn,n) |Tay, = 2, ne = 7] = 0, ace.
Hence
(3) 0= P(nl é ne l Tn1 = b y = 'Yl)f(tl 171)

4+ Py > na| Toy =ty 10 = ) E[f(Thy y02) | Ty = b1y = 71, 0 > g,

and the analogous condition holds with the subscripts 1 and 2 interchanged.
We shall prove that f(T,, n) = 0, a.e., by induction over the possible values
of n. Suppose, therefore, that for some integer m
Po(n < m, f(T»,n) 5 0) = 0.
(This is certainly true for m = 0.) It then follows that if we take y; = m + 1
in (3) the second term of the right hand side vanishes, so that
0=Pn=n|Tn =tr,mu =m~+ 1)ft,, m + 1).

1 The authors would like to thank Mr. E. Fay for pointing out an error in the original
proof of this Lemma.
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Hence,
Pstn =n =m+ 1, f(Ty, , ) = 0)
EPn=m=m+1,Pn =n|Ts,n) =0) =0.
Analogously we see that
Pin =ne=m-4+ 1,f(Tn,,me) £ 0) =0
and, adding, that
Pyn =m+ 1, f(T.,n) = 0) = 0.

This completes the induction.

We need further the notion of strong completeness. Consider a random
variable W = (U, V), suppose that the distribution of W depends on 6, and that
U is a sufficient statistic for 6. Let P, be the conditional distribution of V" given
U = u—this is independent of 6 since U is a sufficient statistic for 6—and let
P = {P,}. We say that the pair P¥, P*” is strongly complete if the conditions
(1) Esf(V) exists for all 6,

(i) E(V)|U = u) = 0 for almost all u,
imply

fw) =0, ae P

For brevity, we shall then usually say that {P%]} is strongly complete.

We can now state the following necessary condition for completeness.

TueorEM. If a closed sequential procedure of the type considered above is com-
plete, then

(i) Su s almost empty for every m for which Wiys — Wiy is almost emply,

(i) for each m for which S. s not almost empty, the family of conditional dis-
tributions of Tom given Tmy1 = t (as t ranges over Wiy — Wny1) is strongly complete.

Proor. For any t e W i — W1 the positive sample space of T given Tmyy = ¢
is clearly contained in S,. . Suppose first that (ii) is violated and consider the
sequential procedure obtained from the given one by truncation after m + 1 ob-
servations. By the lemma it will be enough to show that the truncated procedure
is not complete. For this purpose let us assume that regardless of the stopping
rule all m + 1 variables X;, « -+, Xm41 are observed. We want to construct an
estimate of zero based on the sufficient statistic for the truncated procedure.
This estimate must be a function of T for Ty € S1 , of T for T € S; , etc. That is,
although we may imagine that the full sample of size m + 1 is taken, we must
be careful not to use observations that are impossible when the stopping rule
is followed.

We shall now show that there exists an unbiased estimate of zero which is
zero over Si, -+, Sm_1, equal to f(T») on S, and g(Tni1) on Wpiy where f
and ¢ will be defined below. Since expectation equals expectation of conditional
expectation, a statistic is an unbiased estimate of zero if its expectation exists
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and its conditional expectation given Tny1 = ¢ is zero for almost all £. In our
case this condition is equivalent to

&) fs f@) dPu(u| T = 1) + g() fw not_ @Pn|Tnp = 1) =0
for almost all ¢ e Wiyt
5) [ 760 Put| Tais = 0 = 0

for almost all ¢ ¢ Wiy, ie. for almost all ¢ e Wit — Wiy, since
t ¢ Wiyt implies P(Sp| Ty = 1) = 0,
together with the existence of Es(f(T'm) |n = m) and E¢(g(Tm41) |7 = m + 1).
Since (ii) does not hold there exists f not vanishing a.e. such that
Es(f(Tn)|n = m) exists and (5) is satisfied. If ¢ is defined by (4),
Es(g(Tms1) | » = m + 1) exists, and this completes the proof of the necessity
of (ii).

The necessity of (i) is now obvious. For if (i) is violated, then (5) is satisfied
vacuously, and we can take f to be an arbitrary positive valued function (for
example) and (4) will then be satisfied.

As immediate consequences of this theorem we shall obtain two conditions,
which are easier to apply than condition (ii).

CoRroOLLARY 1. A necessary condition for completeness ts that for no m there
exists a subset A of S such that

Py(4) > 0 for some 6
and
PA|Tny=1) =0 foralmostall teWmi — Wi .

COROLLARY 2. Suppose that the sequence of X’s is such that in the non-sequential
case for all m, p with m < p the posttive sample space of T given Tp = t is the
intersection of the unconditional positive sample space of Tn with the interval [0, t].
Then a necessary condition for a sequential procedure to be complete is thal each
S differ from a half-open interval (possibly empty) [am , bm) With @m £ bm , a1 = 0,
@mt1 = bm, by a set of probability 0.

Proor. Let r be the first value of m for which this condition is not satisfied.
Then there exists ¢ > b,_; such that the sets S, n [¢, ») and S, n [b,—, ¢) both
have positive probability. The result now follows from Corollary 1 if one puts
A = S,nlc, ©).

Next we consider some examples.

Exampre 1. Let X1, X,, --- be independently normally distributed with
known variance and unknown mean 6. In this case T = Y 11X, and since
the positive sample space of T4 is the infinite interval regardless of the values
of Ty, -+, Ty it follows from condition (i) of the theorem that no sequential
procedure is complete, with the trivial exception of the procedures with fixed
sample size.
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ExampLE 2. Let X, X,, --- be independently uniformly distributed over
the interval (0, ),0 < 8 < «. Then T = max (X1, --- , X») and Corollary 2
gives a necessary condition for completeness. If the procedure is truncated we
can deduce sufficiency of this condition from (5). However, this proof does not
apply to the general case. The following proof of sufficiency is similar to some
of the proofs in [3, 4, 5].

Suppose Si, Sz, - - form a set of adjoining intervals (some of them possibly
empty), Sm = [@m, bm), and suppose there is a non-zero unbiased estimate of
zero, ® = ¢(T, , n). Let m be the smallest integer for which ¢ is not zero almost
everywhere on S,, . Then

~
<

Ey(®) = Py(n = m)Ey(® |n =m) + 2 Pon = NE® | n = j)

j=m+1

I
L

and hence

~
<
-~

— 2 Py(n = DEy® | n = j).

J=m+1

(6) Py(n = m)Ey(® | n = m)

Now the right hand side of (6) is zero when 8 < b, , since it is then impossible
that T'; € S; for any 7 > m. Hence

Ef¢(Tn,m) | n < T <bw] =0 forall 6 < ba,

and therefore
]
f é(z, m)a" " dz = 0 forall 0in [an,bu].

But this implies ¢(z, m) = 0 almost everywhere in S,, , which is a contradiction.

ExampLE 3. Let X, X,, --- be independently distributed according to a

Poisson distribution with mean 8. Then 7, = >, X; and again we can apply

Corollary 2. To prove sufficiency we proceed as in example 2. If the condition of

Corollary 2 is satisfied we may write without ambiguity ¢(T) for ¢(T., n).

Let ¢ be the smallest value of T, for Whidia‘l/(T") # 0. Then if the probability
)

of Tn = jis k(j)0% "™, the identity Es(®) = 0implies

0 ©

sk = 2 sk’ - ek = MRIOLOLLAS

Jj=c j=c

~
-

Dividing this equation by 6° and letting ‘9 tend to zero we see that the right
hand side tends to zero, which implies ¢(¢) = 0 and hence a contradiction.

4, The binomial case. As was mentioned in section 1, the problem of bounded
completeness was solved for the binomial case in [3, 4, 5]. Since presumably one is
unwilling to estimate the bounded parameter p by means of an unbounded
estimate, further work here may seem unnecessary. However, the problem of
completeness seems to be of interest for two reasons. If the procedure is bound-
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edly complete without being complete then, even though one may be reluctant
to use such an estimate, there may exist an unbounded unbiased estimate of p,
which for some values of p has smaller variance than the minimum variance
bounded estimate. (An example of this is given in [2]). Since this possibility is
ruled out when the procedure is complete it is seen that completeness permits
statement of a stronger optimum property. Apart from this one may be interested
in estimating some unbounded function of p such as 1/p. In this case bounded
completeness does not permit any statements concerning existence of optimum
estimates.

In the present section we shall change our notation somewhat. We are con-
cerned with a sequence of independent trials with constant probability p of
success. On the basis of m trials the total number y of successes is a sufficient
statistic for p. Instead of representing the sufficient statistic for the sequential
procedure by (y, n), we shall use the representation (z, y) where « is the total
number of failures, so that x + y = n. The couples (z, y) may be thought of as
making up the points with integral-valued coordinates of the first quadrant
of an zy-plane, and as before may be classified as boundary points, continuation
points, and impossible points. Adopting the terminology of [3], we shall call
the value of 4+ ¥ the index of the point (z, y), so that the points of index m
lie on the line z + y = m.

Girshick, Mosteller and Savage defined a sequential procedure to be simple
if for each m the continuation points of index m form an interval. They proved
that a necessary and sufficient condition for a bounded procedure to be com-
plete is that it be simple. (A procedure is said to be bounded if there exists N
so that the number of observations is <N.) They also showed that in general
simplicity is not sufficient for completeness. However, it was shown later [4, 5]
that simplicity is sufficient for bounded completeness.

A sequential procedure is said to be closed if the probability of termination is
unity for every p with 0 < p < 1. It was proved by Girshick, Mosteller and
Savage that a necessary condition for completeness of a closed sequential pro-
cedure is that no procedure obtained from the given one by removing a boundary
point be closed. (Removing a boundary point here means converting it into a
continuation point.) We shall prove below that this condition together with
simplicity is also sufficient for completeness. An interesting question is whether
these two conditions are sufficient for completeness for the general sequential
schemes considered in section 2, when simplicity is replaced by the condition
that every procedure obtained from the given one by truncation is complete,
and when the second condition is modified by the appropriate null set qualifica-
tions. It is easily seen that both of these conditions are necessary.

The following definitions will be needed below. A boundary point (a, b) is a
lower (upper) boundary point if for some z < 0 (>0) the point (¢ + z,b — z)
is a continuation point. An impossible point (a, b) is a lower (upper) impossible
point if for some x < 0 (>0) the point (a + =, b — z) is either a continuation
point or a boundary point.
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If the procedure is unbounded every boundary point is either a lower or an
upper boundary point. If it is simple, no point can be both an upper and a lower
boundary point. The same remarks apply to impossible points.

THEOREM. A necessary and sufficient condition for completeness of a closed
procedure in the binomial case s that
(1) the procedure is simple,
and
(i1) the removal of any boundary point destroys closure.

Proor. Necessity was proved in [3] as was sufficiency for bounded procedures.
Sufficiency for unbounded procedures will follow from the following two facts,
which we shall prove below.

1. Suppose (i) holds and there exist numbers a, M > 0 such that for all boundary
points (z, ) of index m = M the ratio y/2 = a. Let f(z, y) be a non-zero un-
biased estimate of zero defined over the set B of boundary points, and let mq
be the smallest index for which there are points with f(z, y) # 0. Then f(z,y) = 0
for all lower boundary points of index my .

II. If (i) holds and if for every positive number a there exist infinitely many
boundary points (x, ¥) with ¥/ < a, then one may remove any lower boundary
point without destroying closure.

Suppose now that a sequential procedure satisfies (i) and (ii). Then, since no
lower boundary point can be removed without destroying closure, it follows
from II. that there exist a and M such that y/x = a for all boundary points of
index =M. Hence if f(x, ¥) is an unbiased estimate of zero, and if m, is defined
as in L., f(z, y) = 0 for all lower boundary points of index m, . Because of sym-
" metry the statements concerning upper boundary points analogous to I. and II.
also hold. It then follows analogously that f(z, y¥) = 0 for all upper boundary
points of index my. But for a simple unbounded procedure every boundary
point is either an upper or a lower boundary point, and hence we obtain a con-
tradiction with the definition of m, .

Before proving I. and II. we state the following corollary, which generalises
an example given in [3].

CoOROLLARY. A sequential procedure that is not bounded and that has a finite
non-zero number of lower boundary points is not complete. The analogous result
holds for upper boundary points.

Proor or CororLrarYy. This follows easily from II., since if a procedure of
this type is to be closed there must exist for each ¢ > 0 infinitely many upper
boundary points (z, y) with y/z < a.

In the remainder of the paper we are concerned with the proofs of I. and II.

Proor oF I. Assume I. to be false, and let (zo, %) be the lowest boundary
point of index m, for which f(zo, yo) # 0. Then y > vy, for all other boundary
pomts (z, y) for which f(z, y) # 0. Hence if the probability of a point (z, y)

is c(z, ¥)p’q” and if k(z, y) = c(z, y)f(x, v),

l(xo , yo)p”°¢ = —Zk(z, y)p'q",
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where the summation extends over all boundary points of index =my for which
y > yo . Dividing both sides by p** we see that

ko, yo)g™ = —pZk(z, y)p* "¢

If we can show that the expression multiplying —p on the right hand side
remains bounded as p tends to zero, we have a contradiction. For letting p
tend to zero, we would then see that the right hand side tends to zero and the
left hand side to k(o , yo), and hence that f(zy , yo) = 0.

To prove this, note that

| Zk(z, )p" ™ 7'¢" | 2| k(z, y) | p ™

The right hand side is a power series in p. We shall show that this series con-
verges for some po > 0. This implies uniform convergence for | p| < p,, and
therefore the series remains bounded at p = 0. By assumption there exist num-
bers a and M’ such that y/x = a for all boundary points with y > M’. From
now on we shall consider all series as being summed over the set of boundary
points for which y > M’ and hence ¢° = ¢*/°. Since only a finite number of
terms are omitted this does not affect any convergence properties.
Let 0 < p1 < 1. Then, since f is an unbiased estimate of zero, the series

Zk(z, y)pigi
converges absolutely. Hence, so does
L Lo o
Z |k, 9) | P77 2 2k, v) | @p®) = 2k, y) | ph

and consequently the last series is convergent.

Proor or II. Let R be any closed simple procedure satisfying the conditions
of IL., and let (2o, %) be any lower boundary point of R. We denote by R* the
procedure obtained from R by taking (zo, ys) to be a continuation point and
by »* the number of observations for R*.

We first prove that any upper impossible point of R is also an impossible
point of R*. The negation of this would imply that one can get from a lower
boundary point to an upper impossible point going only through impossible
points. This would require at least one step of either of the following kinds:

Lower impossible point — upper impossible point;

Lower boundary point — upper impossible point.

One can easily convince oneself with the aid of a diagram that any procedure
under which such steps are permitted cannot be simple.

Let 0 < p, # < 1, and let a be such that 0 < a < p/q. If p is the true prob-
ability of success, y/z tends in probability to p/q, and hence there exists N
such that

Ply/rzal|p) >

whenever the index of (z, y) exceeds N. By assumption there exists N 1> N
and a boundary point (1, 1) of R* of index N, such thaty;/z; < a. Then the
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probability exceeds = that the random point (z, y) of index N; will lie above
(1, y1). Since (21, g1) is a boundary point, the probability is therefore greater
than = that the point (z, y) of index N is either an upper impossible point for
R and hence impossible for R*, or a stopping or continuation point for R. We
have therefore proved that the probability is >= that either n* £ N, or the
point (z, y) of index N, is a continuation point of R.

But given that one has reached a continuation point (a, b) of R, there exists
N, such that

P(n* £ N;|p, (a, b)) = .
For
P(n* > N:| (a, b)) = P(n > N:|(a,b)) >0 as N;— .

Since there are only a finite number of continuation points of index N, it is
now clear that there exists Ny such that

Pn* S No|p) 27+ — 1,

which can be made arbitrary close to 1 by proper choice of . Therefore R*
is closed.
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