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Summary. The general existence of minimax strategies and other important
properties proved in the theory of statistical decision functions (e.g., [3]) and
the theory of games (e.g., [5]) depends upon the convexity of the space of deci-
sion functions and the convexity of the space of strategies. This convexity can
be obtained by the use of randomized decision functions and mixed (randomized)
strategies. In Section 2 of the present paper the authors state the extension (first
announced in [1]) of a measure theoretical result known as Lyapunov’s theorem
[2]. This result is applied in Section 3 to the statistical decision problem where
the number of distributions and decisions is finite. It is proved that when the
distributions are continuous (more generally, “atomless,” see footnote 7 below)
randomization is unnecessary in the sense that every randomized decision func-
tion can be replaced by an equivalent nonrandomized decision function. Section
4 extends this result to the case when the decision space is compact. Section 5
extends the results of Section 3 to the sequential case. Sections 6 and 7 show,
by counterexamples, that the results of Section 3 cannot be extended to the
case of infinitely many distributions without new restrictions.* Section 8 gives
sufficient conditions for the elimination of randomization under maintenance of
e-equivalence. Section 9 concludes with a restatement of the results in the
language of the theory of games.

1. Introduction. We shall consider the following statistical decision problem:
Let = be the generic point in an n-dimensional Euclidean® space R, and let @
be a given class of cumulative distribution functions F(z) in R. The cumulative
distribution function F(z) of the vector chance variable X = (X;, -, X,)
with range in R is not known. It is known, however, that F is an element of the
given class Q. There is also given a space D whose elements d represent the pos-
sible decisions that can be made by the statistician in the problem under con-
sideration. Let W(F, d, ) denote the “loss” when F is the true distribution of

! The main results of this paper were announced without proof in an earlier publication
[1] of the authors.

2 On leave of absence from the Hebrew University, Jerusalem, Israel.

3 Research under a contract with the Office of Naval Research.

4 The impossibility of such an extension is related to the failure of Lyapunov’s theorem
when infinitely many measures are considered. (¢f. A. Lyapunov, “Sur les fonctions-
vecteurs complétement additives,” Izvestiya Akad. Nauk SSSR. Ser. Mat., Vol. 10 (1946),
pp- 277-279.)

5 The restriction to a Euclidean space is not essential (see [1]).
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X, the decision d is made and x is the observed value of X. We shall define the
distance between two elements d; and d» of D by

(L.1) p(dr, d) = Sup | W(F, di,z) — W(F,dr, ) |.

Let B be the smallest Borel field of subsets of D which contains all open subsets
of D as elements. Let By be the totality of Borel sets of R. We shall assume that
W(F, d, z) is bounded® and, for every F, a function of d and x which is measurable
(B X By). By a decision function (x) we mean a function which associates with
each z a probability measure on D defined for all elements of B. We shall oc-
casionally use the symbol §, instead of 6(z) when we want to emphasize that x
is kept fixed. A decision function 6(z) is said to be nonrandomized if for every
x the probability measure 8(x) assigns the probability one to a single point d of
D. For any measurable subset D* of D (D* an element of B), the symbol §(D* | z)
will denote the probability measure of D* according to the set function 6(x).
It will be assumed throughout this paper that for any given D* the function
8(D* | z) is a Borel measurable function of z. The adoption of a decision function
8(x) by the statistician means that he proceeds according to the following rule:
Let z be the observed value of X. The element d of the space D is selected by
an independent chance mechanism constructed in such a way that for any
measurable subset D* of D the probability that the selected element d will be
included in D* is equal to 6(D* | z).

Given the sample point & and given that 8(z) is the decision function adopted,
the expected value of the loss W (F, d, x) is given by

(1.2) WHF, 5, 7) = fD W(F, d, ) ds..

The expected value of the loss W (F, d, ) when F is the true distribution of X
and 6(x) is the decision function adopted (but « is not known) is obviously equal
to

(1.3) r(F, 8) = jR WHF, 5, ) dF (z).

The above expression is called the risk when F is true and é is adopted.
We shall say that the decision functions §(z) and §*(z) are equivalent if
(1.4) r(F, 8% = r(F, ) for all F in Q.

We shall say that 6(x) and 8*(z) are strongly equivalent if for every measurable
subset D* of D we have

(1.5) fR 5(D* | z) dF () = f s*(D*|z) dF(x)  for all F in €.

6 The restriction of boundedness is not essential (see [1]).
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If 6 and 6* are strongly equivalent, they are equivalent for any loss function
which is a function of F and d only.
For any positive ¢, we shall say that 6(z) and 6*(x) are e-equivalent if

(1.6) |r(F,8) — r(F,6%) | S e forall F in Q,

and strongly e-equivalent if
W . [ 3% 15) ar@) - [ 8%0*|2) aF@) | < ¢
R R

for all measurable D* and for all F in Q.

In Section 2 we state a measure-theoretical result first announced in [1] and
proved in [6]. This result is then used in Section 3 to prove that for every decision
function there exists an equivalent, as well as a strongly equivalent, nonrandom-
ized decision function 6% if @ and D are finite and if each element F(z) of Q
is atomless.” This result is extended in Section 4 to the case where D is compact.
Section 5 deals with the sequential case for which similar results are proved.
A precise definition of a sequential decision function is given in Section 5.

The finiteness of Q is essential for the validity of the results given in Sections
2-5. The examples given in Section 6 show that even when Q is such a simple
class as the class of all univariate normal distributions with unit variance, there
exist decision functions & such that no equivalent nonrandomized decision func-
tions exist. In Section 7, an example is given where a decision function é and a
positive e exist such that no nonrandomized decision function §* is e-equivalent
to é.

In Section 8, sufficient conditions are given which guarantee that for every
8 and for every ¢ > 0 there exists a nonrandomized decision function §* which

is e-equivalent to 4.

2. A measure-theoretical result. Let {y] = Y be any space and let {S} = &
be a Borel field of subsets of Y. Let u(S)(k = 1, - -+, ¢) be a finite number of
real-valued, o-finite and countably additive set functions defined for all S € &.
The following theorem was stated by the authors [1]:

TreorREM 2.1. Let 8;(y) (j = 1,2, -+, m) be real non-negative S-measurable

functions satisfying

@.1) > 5) = 1

j=1

for all y € Y. Then if the set functions w,(S) are atomless there exists a decomposi-
tion of Y into m disjoint subsets Sy, -+, Sa belonging to S having the property

7 A set function u defined on a Borel field § is called atomless if it has the following
property: If for some S S, u(8) 5 0, then there exists an 8’ C S such that S’ ¢S and
such that u(S") # u(S) and u(S’) # 0. A cumulative distribution function is called atom-
less if its associated set function is atomless.
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that

2.2) [ 5@) duw) = m(s) G=1,-,mk=1-,0.

If 57 (y) = 1 for all y € S; and = O for any other y(j = 1, --- , m), then the
above equation can be written as

3 [50) dut) = [H@du)  G=1 - mik=1,-,0.

This theorem is an extension of a result of A. Lyapunov [2] and is basic for
deriving most of the results of the present paper.

3. Elimination of randomization when @ and D are finite and each element
F(x) of Q is atomless. In this section we shall assume that @ consists of the
elements Fy(x), - -+, Fp(z) and D of the elements d,, --- , d,. . Moreover, we
assume that F(z) is atomless for ¢ = 1, --- | p. A decision function §(x) is now
given by a vector function §(z) = [8i(z), - - - , 8.(x)] such that

(3.1) 5@ 20, X s =1

for all « ¢ R. Here §;(z) is the probability that the decision d; will be made when
z is the observed value of X. The risk when F; is true and the decision function
8(x) is adopted is now given by
(3:2) r(Fe8) = X [ W, d, 2)5(0) dF(a).

j=1VR
A nonrandomized decision function §*(z) is a vector function whose components

87 (z) can take only the values 0 and 1 for all z.
For any measurable subset S of R let

33)  »iy(S) = LW(F;,d,-,x) dF (x) G=1,-pj=1,-m).

Then the measures »;;(S) are finite, atomless and countably additive. Using
these set functions, equation (3.2) can be written as

34) rFe,8) = 2 [ 8@) dvis).
=
Replacing in Theorem 2.1 the space Y by R, the set of measures {u;, - - - , uo}

by the set {v;;}(i = 1,---,p;j =1, ---, m), it follows from Theorem 2.1 that
there exists a nonrandomized decision function 6*(x) such that

(3.5) ‘/;3:'(33) dvij(x) = _/357(37) dvii(z) @=1,,p;5=1,+-+,m),

This immediately yields the following theorems:
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TueoreMm 3.1. If @ and D are finite and if each element F(x) of Q is atomless,
then for any decision function §(x) there exists an equivalent nonrandomized de-
cision function §%(x).

Putting W(F, d, ) = 1 identically in F, d and x, equation (3.5) immediately
yields the following theorem:

TureoreM 3.2. If Q and D are finite and if each element F(x) of Q@ is aiomless,
then for any decision function 5(x) there exists a strongly equivalent nonrandomized
decision function §*(x).

4. Elimination of randomization when @ is finite, D is compact and each
element F(z) of Q is atomless. Again, let @ = {F,, -+, F,} where the distri-
butions F are atomless. If the loss W(F, d, ) does not depend on z, the finite-
ness of Q implies that D is at least conditionally corapact with respect to the
metric (1.1) (see Theorem 3.1 in [3]). We postulate that D is compact (but permit
the loss to depend on z), and shall prove that if §(2) is any decision function,
there exists a nonrandomized decision function §*(x) such that 6*(x) is equivalent
to é(x), i.e.,

(41) ri(8) = ri(8%) @C=1--,p)

where 7;(8) stands for r(F;, 5).

Since D is compact there exists an infinite sequence of decompositions of the
space D into a finite number of disjoint nonempty measurable sets, the I'*® de-
composition to be C(1, 1, -+, 1), -+, C(kr, - -+ , k) with the properties:

(a) Any two sets C which have the same number of indices not all identical,

are disjoint.

(b) The sum of all sets with the same number / of indicesis D (I = 1,2, ---

ad inf.).

(c) If the sequence of indices of one set C' constitutes a proper initial part of

the sequence of indices of another set C, the first set includes the second.

(d) The diameters of all sets with I indices are bounded above by A(l) and

lim A(l) = 0.
=
Let I be fixed and define
(4.2) Amyyees .mz(x) = 3[C(m, -+~ » My l x].
Define, furthermore,
1

Wiz, Clmy, +--, mp)] = W(F;, d, ) db.

(4.3) Aml"""l(x) C(myyeeem))
if Amyeemy () > 0,
= 0 if Aml...m,(x) = O-
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Clearly,
ki

k1

@) om0 = 2 2 [ Wi, Com, e m @) dF ().
mi= mi=

Considering a decision space D, with elements dm,...m, (m; = 1, -, k;;

1 =1, -+, 1) and putting the loss W(F;, dn,...m;, 2) = Wiz, Clmy, -+, m))],

equations (3.3) and (3.5) imply that there exists a finite sequence of measurable

functions Amy.om, (@) (my = 1, -+ ky; -+ 3m = 1, -+, k) such that

(4.5) BApyeomy(®) = 0 or 1 for all z,

(4.6) > .- DBy (@) =1 for all ,
my my

4.7) Amyeemy(@) = 0 whenever An,...m,(z) = 0,

and

Wiz, C(my, -+, m)|Bmy..on, (x) AF i(x)

(4.8)
= f Wiz, Comy, =+« , m)Amy..m, (@) dF i(2).

Let now §(z) be the decision function for which

(4.9) BClm,y -+ m) | 2] = By (2)
and for any measurable subset D,,...m; of C(my, --- , m))

_ ~ ¥ Dmyeemy |2
(4.10) 8[Dmy.eom, |x]Aml..~ml(x) = 8[C(my, +++, my)lz]’

8(Dmy..om; | T)
8[C(my,---,my) | 2]

It then follows from (4.4) and (4.8) that
(4.11) r:(8) = r:(5).

is defined to be = 0 when 8[C(my, -+, m) | ] = 0.

where

Applying the above result for I = 1, we conclude that there exists a decision
function §'(x) with the following properties: The choice among the C’s with
one index is nonrandom. The decision, once given the C (with one index) chosen,
is made according to §(z). We have 6'[C(m,) | 2] = 0 whenever 8[C'(m;) |z] = 0
and

r(8) = r:(8Y) @=1,---,p).

Repeat the above procedure for every C with two indices, using
Wiz, C(my, my)} as weight function and &'(z) as the decision function. We
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conclude that there exists a decision function 6°(z) with the following properties:
The choice among the C’s with two indices is nonrandom. 8*[C'(m, , ms) | 2] = 0
whenever 8'[C(my1, my) | 2] = 0. The decision, once given the C' (with two in-
dices) chosen, is made according to §'(x) and, therefore, in accordance with
5(z). We have

f f W(F;,d,z) dstdF () = f f W(F:, d, z) do? dF(z) ™ = b2 o k)
RJYC(my) RJC(my)

¢=1--,p)

Repeat the above procedure for all C’s with [ indices, I = 3, 4, --- ad inf. At
the I™ stage we obtain a decision function §‘(z) with the following properties:
The decision among the C’s with I indices is nonrandom. 8'[C(my , - -+ , m;) | 2] =
0 whenever 8" [C(m,, -+, m;) | x] = 0. The decision, once given the chosen
C with 1 indices, is made according to é(x). We have

t=1,,p
ml=1,’°°,kl
ml—l = 1’ LI ,kl—l

Hold « fixed and let C'(x; I) be that C with I indices for which

f ol = 1
C (z3l)

Then C(x; 1 + 1) is a proper subset of C(x; ) for every positive I. The sequence
C(x; 1,1l =1,2,---, determines, because D is compact, a unique limit point
c(x) such that any neighborhood of ¢(z) contains almost all sets C(z; 7). Hence
the sequence of probability measures 821 =1,2, .-+, ad inf.) converges to a
limit probability measure 8; which assigns probability one to any measurable
set which contains the point c¢(2). Since W(F;, d, =) is continuous in d, we have

(4.12) tim [ W, d, o) dbl = fD W(F:,d, z) do*
for any .

Now let z vary over R. It follows from (4.12) and the boundedness
of W(F,d, z) that lim,_, r:(3") = r:(6*). Since r;(8") = r:(3), also r;(5*) = r:(5)
(f = 1,---, p). Thus the probability measures §*(x) constitute the desired
nonrandomized decision function.

It remains to show that for any measurable subset D* of D, the function
6*(D* | x) is a measurable function of x. The measurability of 8*(D* | z) can
easily be shown for any D¥* if it is shown for all closed sets D*, since every
measurable set can be attained by a denumerable number of Borel operations
(denumerably infinite sums and complements) starting with closed sets. Thus
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we shall assume that D* is closed. For any positive p let D: be the sum of all
open spheres with center in D* and radius p. It is easy to see that

8*(D3, | z) = liminf (D) | z) = §*(D* | z).
l=00
Since lim 8*(Dy3, | z) = 8*(D* | z), it follows from the above relation that
p=0

lim liminf 6'(D) | z) = 8*(D* | z).

p=0 l
Since 61(D:," | ) is a measurable function of z, the measurability of §*(D* | z) is
proved.

5. Elimination of randomization in the sequential case. In this section we shall
consider the following sequential decision problem: Let X = {X.}
(mn =1,2,.--, ad inf.) be a sequence of chance variables. Let 2 be the generic
point in the space B of all infinite sequences of real numbers, ie., z = {z.}
(n = 1,2, ---, ad inf.) where each z, is a real number. It is known that the
distribution function F(z) of X is an element of ©, where Q consists of a finite
number of distribution functions Fi(z), - - -, Fp(z), and that the distribution
function of X; is continuous according to Fi(x), 7 = 1, -- -, p. The statistician
is assumed to have a choice of a finite number of (terminal) decisions d , - -,
dn, i.e., the space D consists of the elements d; , d;, -+, dw . A decision rule
8 is now given by a sequence of nonnegative, measurable functions é,.(z,, - - - , )
w=20,1,---,m;t =1,2,.--, ad inf.) satisfying

(5.1) .Y:JO Spe(@y, oov 2y = 1

for —o» < 2, -+, 2; < . The decision rule § is defined in terms of the
functions 8,; as follows: After the value z; of X; has been observed, the sta-
tistician decides either to continue experimentation and take another observa-
tion, or to stop further experimentation and adopt a terminal decision
dij = 1,---, m) with the respective probabilities du(z;) and &;(x:)
(j =1,---,m). If it is decided to continue experimentation, a value x, of X,
is observed and it is again decided either to take a further observation or adopt
a terminal decision d;(j = 1, - -+ , m) with the respective probabilities & (21 , Z2)
and 8;2(x1, 2.)(j = 1, ---, m), etc. The decision rule is called nonrandomized
if each 8, can take only the values 0 and 1.

Let vipe(x1, -+, x.) represent the sum of the loss and the cost of experi-
mentation when F; is true, the terminal decision d, is made and experimenta-
tion is terminated with the ¢* observation

w=12-++,m;i=1,--+,p;t =1,2, .-+, ad inf.).

The functions v;,:(x1, - - - , ;) are assumed to be finite, nonnegative and meas-
urable. We shall consider only decision rules § for which the probability is one
that experimentation will be terminated at some finite stage. The risk (ex-
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pected loss plus expected cost of experimentation) when F; is true and the rule
§ is adopted is then given by

r@) = 2 ng vane(@1, + oo, 20)801(1)d02 (@1, 22) + ¢ Soce—y (@1, + v+, Timt)
t

t=1v=1

(5.2)
s 0Ty, e, my) dF (g, -0, ),
where R, is the ¢{-dimensional space of z;, -+, z, and Fy(2:, -+, x,) is the
cumulative distribution function of X;, ---, X, when F, is the distribution
function of X.

We shall say that the decision rules 8 and 6° are equivalent if 7,(8") = r:(5%)
fori = 1, ---, p. We shall say that &' and &° are strongly equivalent if

VaeTy, oo, 2)801(x) <+ 80—y @1, v, Te)ye(Ta, o0, ) dF
Ry

(5.3)
= f Um(wl, Tt xt)agl(xl) tc 53(:-1) (xl, tty xz—l)afz(xx, ceo,xy) dF
Ry
fort =1,2,---,p;v=1--- ,mandt = 1,2, ---, ad inf.
Clearly, if &' and &* are strongly equivalent and if the functions vs,.(z; , - -+ , z¢)
reduce to constants v, then 8' and &° are equivalent for all possible choices of

the constants vy .

Let
ﬁa‘i(x) 6) =
(5.4) o
Z:l 21 vive(xl, Tty xt)5ol(x1) s 50(:—1)(1?1, ce ,xt—l)avt(xly ey z4).
t=1 v=

We shall prove the following lemma:

LemMa 5.1. Let & be a decision rule for which ¢i(x, §) < « for all x, except
perhaps on a set of x’s whose probability is zero according to every distribution
function Fi(x)(@ = 1, -+, p). Let v and T be given positive iniegers. Then there
exists a decision function & with the following properties:

(5.5) Svr(xly e 7xr) = O or 1) Eo S"(xl’ ctty xf) = 1)
for every point in R.(v = 0, 1, ---, m),
(5.6) Syt (xl, ctty xt) = 5vt(xl, M) xt) (V = O) 11 T, My t¢7)1
(57) 7'1'(5) = ri(g) (7/ =1,---, P),
(5.8) f Vivtbor * * * Soi—1y0pe AF iy = j; Vivedor =+ + do(e—1y0se AF iy

. Ry t

(5.9) ei(z, 8) < =,
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for all x except perhaps on a set whose probability is zero according to every dis-
tribution Fy(x)(c = 1, -+« , p).
Proor. We can write ¢;(z, §) as follows:

=1 m

pi(z,8) = ‘Zl Zl Virt(T1, <+, Te)do1 ++ Bo(e—1)0se
(5.10) o
+ tE Eo gi!rt(xl, MY xt)sn )

where g;-:(x1, - - , ;) does not depend on &, , 81, *** , dmr . The first double
sum reduces to zero when r = 1. Clearly, if a § with the desired properties exists,
then

—1 m

iz, 8) = ‘El Zl Vi@, + o, )1 ¢+ 0 Bou—1yBue
(5.11) o
+ tz ZO givrt(xly MY xt)sv-r-
For any subset S of R, let
(5-12) I‘zwt(S) = ‘/Sgint(ilil, Tty xl) dFi (t =T,T + 1, Sty T))
and
(513) l‘ir‘r(S) = f [ giv-rt(xly e -Tt)] dF ;.
8 t=T+1

The measures us.; are not defined if 7 > T. Clearly, the measures
piarsw = 0,1, -+ myt=r,741,---,T)

and the measures us.(v = 1, - -+ , m) are nonnegative, countably additive and
o-finite. Since for any x for which ¢;(x, §) < « and 8, > 0, the sum

0

Zlgﬂ}‘rt(xlr "'7x¢) < oo,

t=T+

it follows from the assumptions of Lemma 5.1 that u.. is o-finite over the space
R’ consisting of all z for which &, > 0. Of course, u.. is nonnegative and count-
ably additive. Let R" be the set of all points z for which &, = 0. We put

(5.14) (@1, -+, ) =0 forall zinR".

Application of Theorem 2.1 to each of the spaces R’ and R" shows that there
exist measurable functions §,,(z1, --+, z)(» = 0, 1,.- -+, m) such that in addi-
ion to (5.14) the following conditions hold:

(515) &, =0 or 1(p =0,1,---m) and 2 35, =1 forallz,
v=0
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6v1d vt = f Svrd ivr
(5.16) /; Hivrt ® Mivre

=1 e ,pv=01 ---myt=7r,7+1,...,T),
(5'17) /677 dlhyf—flsnd}l;" ('L= 1, '--’p;y:’.O’ 1’ o-.m).

Lemma 5.1 is a simple consequence of the equations (5.14)-(5.17).

For any positive integer «, we shall say that a decision rule é is truncated at
the utt stage if 8¢ur = 0 for »’ = u identically in x.

TuaeoreMm 5.1. If § is truncated at the u™ stage there exists a nonrandomized
decision rule 8% that is strongly equivalent fo 6.

Proor. It is sufficient to prove Theorem 5.1 in the case where §,; = 0 for
t > wand v % 1and 6, = 1 for¢ > u. Clearly, ¢i(z, §) < o« for all 2. Putting

= land T = u in Lemma 5.1, this lemma implies the existence of a decision
rule &' with the following properties: (a) 8" is strongly equivalent to 8; (b) 6, = 0
orl(»=0,1,---,m); (c) 8y, = d,efor v = 0,1, ---, m and ¢t > 1. Applying
Lemma 5.1 to 6' and putting = == 2 and T = u, we see that there exists a de-
cision rule &° with the following properties: (a) ° is strongly equivalent to 8';
(0)é=00rl1(=0,1,---,m);(c) 8l = 6. for » = 0,1, --- ,mand t = 2.
Continuing this procedure, at the u* step we obtain a decision rule §* that is
nonrandomized and is strongly equivalent to all the preceding ones. This proves
our theorem.

We shall say that two decision rules ' and &* are strongly equivalent up to
the T* stage if

1 1 1
f Vm(xl, Ty, CALITIER 80(e—1 6yt AF 3,
Ry

5.18
(5.18) = Vi1, 0, X0 -+ - SoyOne AF 4,

Ry

for ¢=1,---,p;v=1,++e,m and t=1,---,T.

Furthermore, we shall say that a decision rule § is nonrandomized up to the
stage Tif 6, =0orlforv=0,1,---,mandt =1, ---, T.

We now prove the following theorem.

TureoreM 5.2. If & is a decision rule for which ¢i(x, §) < o, except perhaps on
a set of x’s of probability zero according lo every Fy(x)(t = 1, -+, p), then there
exists a nonrandomized decision rule 6* that is equivalent to 5.

Proor. Let {¢;} and {9}z = 1,2, .-+, ad inf.) be two sequences of positive
numbers such that lime; = 0 and lim #n; = . Let T; be a positive integer

such that -

T m
(5.19) 0 — 2> fR Virt(Z1, oo, TYor + o e doqeny e dFs < & if 1:(8) < oo,
13

t=1p=1
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and

Ty, m
(5.20) tZI 221/; Vue(T1, o0, 20 o v+ Boe—ny Oyt AFyy > m if 1i(8) = 0.
=1 =1 Jr,

Let 6" be a decision rule such that ¢,(z, 8') < « (except perhaps on a set of
probability measure zero); §' is equivalent to &; &' is strongly equivalent to &
up to the Tyt stage; 8" is nonrandomized up to the 71" stage and 8., = 4, for
t > T:. The existence of such a decision rule follows from a repeated applica-
tion of Lemma 5.1. In general, after 8, ---, 8 and Ty, ---, T; are given, let
8" be a decision rule such that ¢.(z, 3 < (except perhaps on a set of
probability measure zero); 8" is equivalent to &’; 8" is strongly equivalent
to 8" up to the Tt stage, where T, is a positive integer chosen so that T'j,; >
T, and (5.19) and (5.20) hold with & replaced by &, ¢ replaced by e;41 and =
replaced by 7,41 ; 8'*" is nonrandomized up to the stage T, ; 851 = &), for
t < T, and 87" = 8,, for ¢ > T,. . The existence of such a decision rule
8" follows again from a repeated application of Lemma 5.1.

Let 6* be the decision rule given by the equations

(5.21) or, = oL, w=01,--+,m;t=1,2,+--, adinf).

It follows easily from the above stated properties of the decision rules &’
(j=1,2,---,adinf.) that §* is nonrandomized and r;(6*) = r;(8)z =1, - - - , p).
This completes the proof of Theorem 5.2.

6. Examples where admissible’ decision functions do not admit equivalent
nonrandomized decision functions. In this section we shall construct examples
which show that there exist admissible decision functions 6(z) which do not ad-
mit equivalent nonrandomized decision functions §*(z).

ExampLE 1. Let X be a normally distributed chance variable with unknown
mean 6 and variance unity. This means that Q is the totality of all univariate
normal distributions with unit variance. Suppose we wish to test the hypothesis
H, that the true mean 6 is rational on the basis of a single observation z on X.
Thus, D consists of two elements d; and d; where d; is the decision to accept
H, and d, is the decision to reject H,. For any decision function §(z), let 8:(x)
denote the value of 6(d; | z). Let the loss be zero when a correct decision is
made, and the loss be one when a wrong decision is made. Then the risk when
6 is the true mean and the decision function §(x) is adopted is given by

1 0
(6.1) r(9,8) = Vo [ %5 (x) da when 6 is irrational,

l 0
(6.2) (6, 8) = %—; [ (] — 5.(2)) da when 6 is rational.

8 A decision function with risk function r(F) is called admissible if there exists no other
decision function with risk function ' (F) such that ' (F) = r(F) for every F € Q, and the
inequality sign holds for at least one F ¢ Q.
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Let 83(x) = % for all z. Clearly,
(6.3) r(6,8) =}

for all 8. We shall now show that §°(z) is an admissible decision function. For
suppose that there exists a decision function &'(z) such that

(6.4) r(6,8) < r(6,8) = %
for all 6, and
(6.5) r(6,8) <r6,8) =}

for some value 6; . Suppose first that 6, is rational. Since the integrals in (6.1)
and (6.2) are continuous functions of 6, for an irratiohal value 6, sufficiently
near to 6, we shall have r7(6;, 6’) > % which contradicts (6.4). Thus, 6; cannot
be rational. In a similar way, one can show that 6; cannot be irrational. Hence,
the assumption that a decision function &’(z) satisfying (6.4) and (6.5) exists
leads to a contradiction and the admissibility of 6°(x) is proved.

Let now §*(x) be any decision function for which

(6.6) (6, 8*) = r(6, &°)
for all 8. Now (6.6) implies that

©7) \%27 [ : D (5 ) — 5% @) dn = 0

identically in 6. Since §,(z) — 81 (z) is a bounded function of z, it follows from
the uniqueness properties of the Laplace transform that (6.7) can hold only if
i(x) — 81 (x) = 0 except perhaps on a set of measure zero. Hence, no nonran-
domized decision function §*(z) can satisfy (6.6).

In the above example, the distributions consistent with the hypothesis H,
which is to be tested (normal distributions with rational means) are not well
separated from the alternative distributions (normal distributions with ir-
rational means). One might think that this is perhaps the reason for the existence
of an admissible decision function &° such that no nonrandomized decision func-
tion 6* can have as good a risk function as 6° has. That this need not be so, is
shown by the following:

ExaMpLE 2. Suppose that X is a normally distributed chance variable with
mean 6 and variance unity. The value of 8 is unknown. It is known, however,
that the true value of 8 is contained in the union of the two intervals [—2, —1]
and [1, 2]. Suppose that we want to test the hypothesis that 6 is contained in
the interval [—2, —1] on the basis of a single observation x on X. Suppose,
furthermore, that the chance variable X itself is not observable and only the
chance variable ¥ = f(X) can be observed where f(z) = « when |z | < 1,
and = |z | when | z | = 1. Let the loss be zero when a correct decision is made,
and one when a wrong decision is made. For any decision function §(y), let
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8:1(y) denote the value of 6(d; | y) where d; denotes the decision to accept Hy .
Let 8°(y) be the following decision function:

@) =1 when —1 <y <0
(6.8) =0 when 0=2y<1

=% when y=1.

First we shall show that &°(y) is an admissible decision function. For this
purpose, consider the following probability density function ¢g(8) in the param-
eter space: g(f) = % when —2 <6 =< —1lorl 6 =2, = 0for all other 6.
If we interpret g(8) as the a priori probability distribution of 6, the a posteriori
probability of the #-interval [—2, —1] is greater (less) than the a posteriori
probability of the #-interval [1, 2] when —1 < y <0 (0 < y < 1), and the a
posteriori probabilities of the two intervals are equal to each other when y = 0
or y = 1. Hence, 8°(y) is a Bayes solution relative to the a priori distribution

g(9), i.e.,

6.9) [:1 r(9, ) db + f1 “r6, 8 do < f

-1 2
r(6, 8) do + j (6, 8) do
2 1

for any decision function 8. Suppose now that § is a decision function for which
(6, 8) = r(6, &° for all 6. It then follows from (6.9) that (6, 8) < (6, 6°) can
hold at most on a set of #’s of measure zero. Since, as can easily be verified,
(6, 8) and (6, &°) are continuous functions of 6, it follows that »(8, §) = (8, &°)
everywhere and the admissibility of &° is proved.

Let now &'(y) be any decision function for which (8, 8’) = (8, &°) for all 6,

ie.,
1 0
(6.10) or f e HEN (y) — ()l dz = 0 for all 6.

Since 83(y) — 81(y) is a bounded function of z, it follows from the uniqueness
properties of the Laplace transform that (6.10) can hold only if 8}(y) = 1)
except perhaps on a set of measure zero. Thus, no nonrandomized decision
function 8* exists such that r(, 8*) = (6, &°) for all .

7. Compactness of © in the ordinary sense is not sufficient for the existence
of e-equivalent nonrandomized decision functions. Let @ = {F} be the totality
of density functions’ on the interval 0 £ < 1 for which F(z) £ ¢ for every z,
where ¢ is some positive constant greater than 2. The sample space will be the
interval 0 £ 2 < 1. We shall say that the sequence F;, F,, --- converges

to F if
lim F.(y) dy = [ F(y) dy

n—eo V—

9 Here F(z) denotes a density function. This represents a change in notation from pre-
ceding sections.
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for every real z. The set @ is compact in the sense of the above convergence
definition.” Let A be a fixed interval a; < z < a; where 0 < a; < a, < 1. Let
D = {di, d;} and define W as follows:

W(F; dl) + W(F, dﬁ) = 1,
W(F,d)) =0orl

according as the probability of A under F is rational or not. For any decision
function 8(x), let 8;(x) denote the probability assigned to d; by é(z), i.e., &i(z) =
é (d1 I ID).

Let &'(z) be the decision function for which 83(z) = 4. We shall prove that
&'(r) is an admissible decision function. For suppose there exists %a decision
function 8°(x) such that

(7.1) r(F, &) S r(F, ) =}
for every F, and for F, we have
(7.2) r(Fo, &%) < r(Fo, d).

Now, if F; — Foand W(F , d1) = W(F,, d) for every %, then r(F; , ) — r(Fo , 8)
for every decision function 8(z), and, in particular, for 6°(x). If F; — Fy and
W(F:,d) + W(F,,d) = 1for every i, then r(F;, 8) — 1 — r(F,, &) for every
decision function 3(z) and, in particular, for &(x). Clearly, we can construct
two sequences of functions F such that each sequence converges to Fo, the
probability of A according to every member of the first sequence is rational,
and the probability of A4 according to every member of the second sequence is
irrational. Because of (7.2) it follows that inequality (7.1) will be violated for
almost every member of one of these two sequences. Hence &' is admissible.

Let us now prove that there cannot exist a nonrandomized decision function
8*(x) such that

(7.3) r(F, %) =r(F, &) +1=1%

for every F e Q. Suppose there were such a decision function 6*(x). Let H be
the set of 2’s where 81 (z) = 1, and let H be the complement of H with respect
to the interval [0, 1]. If H is a set of measure zero or one then obviously (7.3)
is violated for some F. Thus, it is sufficient to consider the case when H is a
set of positive measure @ < 1. Suppose for a moment that o > 3. Let G be
the density which is zero on H and constant on H. From (7.3) it follows that
P{A | G} is rational. There exists a density ¢’ e @ such that P{H |G’} > §
and P{4 | @'} is irrational. But then (7.3) is violated for G'. If @ < 4, let G
be the density which is zero on H and constant on H. From (7.3) it follows
that P{A4 | G} is irrational. There exists a density G’ ¢ @ such that P{H | G’} >

10 The cumulative distribution functions are well-known to be compact in the usual
convergence sense. Since the densities are bounded above the limit cumulative distribution
function must be absolutely continuous.
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3 and P{A | G’} is rational. But then (7.3) is violated for G'. Thus (7.3) can
never hold for every F ¢ @ and the desired result is proved.

8. Sufficient conditions for the existence of e-equivalent nonrandomized
decision functions. In this section we shall consider the nonsequential decision
problem (as described in the introduction), and we shall give sufficient conditions
for the existence of e-equivalent nonrandomized decision functions. We shall
consider the following four metrics in the space Q:

@.1) p(Fy, F2) = Sup | fs dr, — fs dF, |
when 8§ is any measurable subset of R,

(8.2) p2(F1, Fo) = ngp | W(Fy, d, )y — W(F,,d,2) |,
(83) ps(F1, F2) = pu(F1, Fa) + po(F1, Fa),

(8.4) pa(F1, Fy) =S:1P|T(F1,5)—T(F2,3)|-

First we prove the following lemma:
Lemma 8.1. If Q 4s conditionally compact in the sense of the metric p; , then it

s conditionally compact in the sense of the metric ps .
Proor. Let {F;}(z = 1, 2, ---, ad inf.) be a Cauchy sequence in the sense

of the metric ps, i.e.,

(8.5) lim ps(F;, Fj) = 0.

=0

It follows from (8.5) and (8.3) that W(F;, d, x) converges, as ¢ — o, t0o a
limit function W(d, z) uniformly in d and =, i.e.,

(8.6) lim W(F;, d, ) = W(d, z)
uniformly in d and z. Hence

®8.7) lim f W(F:, d, z) do. = f W(d, ) ds.

uniformly in z and 8. Because of (8.5), we have

(8.8) lim pl(F.- y F,) = 0.

1yj=00

Hence there exists a distribution function Fy(x) (not necessarily an element of
Q) such that

(8.9) Lim py(Fs, Fo) = 0.
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It follows from (8.7) and (8.9) that
810) lim [ f W(F,, d, z) da,,} dF(z) = f [ f W, z) d6,:| dF ()
1=00 R D - R D

uniformly in 8. Hence {F,} is a Cauchy sequence in the sense of the metric ps
and Lemma 8.1 is proved.

Next we prove

Lemva 8.2. If D s conditionally compact in the sense of the metric (1.1) and
if & is any decision function, then for any e > O there exists a finite subset D' of
D and a decision function 8" such that 8"(D'|x) = 1 identically in x and &' is
e-equivalent to 8.

Proor. Since D is conditionally compact, it is possible to decompose D into
a finite number of disjoint subsets D, , ---, D, such that the diameter of D;
is less then e(j = 1,---, u). Let d; be an arbitrary but fixed point
of D;(j = 1,---, u) and let 8'(x) be the decision function determined by the

condition

(8-11) 51(di I x) = 8(Di | x) (] =1,---, u)
Clearly
(8.12) ( f W(F, d, z) do, — f W, d, z)dol| < e

D D

for all F and z. Hence,
(813) lT(F) 61) - T(F; 5) I S e

for all F and our lemma is proved.

We are now in a position to prove the main theorem.

TueoreM 8.1. If the elements F(x) of Q are atomless, if © is conditionally com-
pact in the sense of the metrics py and p. , and if D is conditionally compact in the
the sense of the metric (1.1), then for any ¢ > 0 and for any decision function 8(x)
there exists an e-equivalent nonrandomized decision function 6*(x).

Proovr. Because of Lemma 8.2, it is sufficient to prove our theorem for finite
D. Thus, we shall assume that D consists of the elements d;, - -+, dm . It is
easy to verify that conditional compactness of Q@ in the sense of both metrics
p1 and p, implies conditional compactness in the sense of the metric p;, and
because of Lemma 8.1, also in the sense of the metric ps. Thus, conditional
compactness of © in the sense of the metrics p; and p, implies the existence of a
finite subset Q* = {F;, ---, Fi} of @ such that Q* is ¢/2-dense in Q in the sense
of the metric ps . Let 6* be a nonrandomized decision function that is equivalent
to 8 if Q is replaced by ©@*. The existence of such a 6* follows from Theorem
3.1. Since Q* is ¢/2-dense in  (in the sense of the metric ps), we have

(8.14) | #(F, 8%) — r(F,8)| < ¢ forall Fing

and our theorem is proved.
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We shall now introduce some notions with the help of which we shall be able
to strengthen Theorem 3.1. For any measurable subset S of R, let

(8.15) r(F, 5| 8) = fs [ ]D W(F, d, z) da,] AP (z).

We shall refer to the above expression as the contribution of the set S to the
risk. For any S we shall consider the following four metrics in Q:

(8.16) oy, F) = Sup | [ aFy — [ aFy

where S* is any measurable subset of S, .

(8.17) pes(Fy, Fo) = ngg | W(F1,d,z) — W(F.,d,z)!,
(8.18) pss(F1, F2) = p1s(F1, F3) + pos(F1, F3),

(8.19) pss(Fy, Fo) = Sl:p |r(F1,8|8) —r(F:,8]|8)]|.

Finally let the metric ps(d: , d;) in D be defined by
(8.20) ps(ds, dz) = §ug | W(F,dy,z) — W(F,dz, )| .

We shall now prove the following stronger theorem:

TuEOREM 8.2. Let all elements F of @ be atomless. If there exists a decomposi-
tion of R into a sequence {R:} (¢ = 1,2, --- , ad inf.) of disjoint subsets such that
Q s conditionally compact in the sense of the metrics pir; and psr; for each i, and
such that D is conditionally compact in the sense of the metric pr; for each i, then
for any € > 0 and for any decision function & there exists an e-equivalent non-
randomized decision function §*.

Proor. Let {R;} be a decomposition of R for which the conditions of our
theorem are fulfilled. Let {e;} be a sequence of positive numbers such that
D rae = e Let 8'(z) be a decision function such that 8,(z) = 8(x) for any x
not in Ry, 8'(z) is nonrandomized over R, (for any x in R, 8'(x) assigns the
probability one to a single point d in D) and such that

(8.21) | r(F,8|R) — r(F,8'|R)| £« forall F.

The existence of such a decision function 8" follows from Theorem 8.1 (replacing
R by R,). After &', - - - , 6" have been defined ( = 1), let 6" be a decision func-

i—1

tion such that &' is nonrandomized over R, 8'(z) = 6 '(z) for all  in .Ul R;,
J=

8'(x) = 8(z) for all x in R — U R; and such that

=1

(8.22) |r(F, 8| R)) — r(F,8|R:)| £ & forall Fing.
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The existence of such a decision function 8* follows again from Theorem 8.1.
Clearly §'(z) converges to a limit 8*(z), as ¢ — oo, This limit decision function
8*(x) is obviously nonrandomized and satisfies the conditon

(8.23) |r(F,8|R:i) — r(F,8* | R:)| = ¢

for all 7 and F. Theorem 8.2 is an immediate consequence of this.

The conditions of Theorem 8.2 will be fulfilled for a wide class of statistical
decision problems. For example, this is true for the decision problems which
satisfy the following six conditions:

ConprTioN 1. The sample space R is a finite dimensional Euclidean space.
All elements F(x) of Q@ are absolutely continuous.

CoNDITION 2. @ admits a parametric representation, © e each element F of Q
18 associated with o parametric point 6 in a finite dzmenswnal Euclidean space E.

We shall denote the density function p(z) corresponding to the parameter
point 6 by p(z, 6).

ConpriTioN 3. The set of parameter points 6 which correspond to all elements F
of Q 1s a closed subset of E.

We shall call this set of all parameter points 6 the parameter space. Since
there is a one-to-one correspondence between the elements F of @ and the points
6 of the parameter space, there is no danger of confusion if we denote the param-
eter space also by Q.

ConprTioN 4. The density function p(x, 8) ts continuous in 6 € Q for every x.

ConpiTioN 5. The loss W (0, d) when 0 is true and the decision d is made does
not depend on x. D s conditionally compact in the sense of the metric p(dy , ds) =
Sup | W(o,d) — W(,d)| .

CONDI’I‘IO\I 6. For any bounded subset M of R, we have hm f p(z, 6) dx = 0.
{ 0e
We shall now show that the conditions of Theorem 8.2 are fulfilled for any
decision problem that satisfies Conditions 1-6. Let S: be the sphere in R with
—1

center at the origin and radius . Let R, = S;and R; = S; — U R, = 1,
=1

2, ---,ad inf.). Condition 5 implies that D is conditionally compact in the
sense of the metric pg; for all 7. It follows from Condition 5 and Theorem 2.1

n [3] that Q is conditionally compact in the sense of the metric p(6;, 6;) =
Sup | W(6,,d) — W(6:,d)|. Hence @ is conditionally compact in the sense of

the metric por; for each ¢. It remains to be shown that € is conditionally compact
in the sense of the metric piz, for each . For this purpose, consider any se-
quence {6;}(j =1, 2.- - -, ad inf.) of parameter points. There are 2 cases possible:
(a) {6;} admits a subsequence that converges in the Euclidean sense to a finite
point 6, ; (b) ]1m | 8;] = . Let us consider first the case (a) and let {67} be a

subsequence of {0 } which converges to a finite pomt 6o . It then follows from
Condition 4 and a theorem of Robbins [4] that {6}} is a Cauchy subsequence
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in the sense of the metric pz, for each 7. In case (b), Condition 6 implies that
the sequence {6;} is a Cauchy sequence in the sense of the metric p;z; for each i.
Thus, © is conditionally compact in the sense of the metric p;z; . This completes
the proof of our assertion that a decision problem that satisfies Conditions 1-6,
satisfies also the conditions of Theorem 8.2.

9. Application to the theory of games. Translation of the results of Section 2
into the language of the theory of games is immediate and we shall do this only
very briefly. The function W(F;, d;, 2) ¢ =1, -+ ,p;j=1,---, m; z ¢ R),
of Section 1 is now called the pay-off function of a zero-sum two-person game.
The game is played as follows: Player I selects one of the integers 1, - -- , p,
say t, without communicating his choice to player II. A random observation
z € R on a chance variable whose distribution function is F; is obtained and
communicated to player II. The latter chooses one of the integers 1, --- , m,
say j. The game now ends with the receipt by player I and player II of the
respective sums W(F;, d;, z) and —W(F;, d;, x). Randomized (mixed) and
nonrandomized (pure) strategies are defined in the same manner as the cor-
responding decision functions in Section 1. When the distribution functions
Fi(x)( = 1,--+, p) areall atomless the obvious analogues of Theorems 3.1
and 3.2 hold.

It should be remarked that the usual definition of randomized (mixed) strat-
egy is not as general as the one given above. In the usual définition player IT
chooses, by a random mechanism independent of the random mechanism which
yields the point z, some one of a (usually finite) number of nonrandomized
(pure) strategies, and then plays the game according to the nonrandomized
strategy selected. In our definition (used in [3]) the random choice is allowed
to depend on z. Clearly our method of randomization includes the usual one as
a special case. The relation between the two methods of randomization will be
discussed by two of the authors in a forthcoming paper [7].

Suppose that the number of possible decisions is at most denumerable, and
that the decision procedure consists in choosing at random and in advance of
the observations, one of a finite number of nonrandomized decision functions.
The sample space can be divided into an at most denumerable number of sets
in each of which only a finite number of decisions is possible (the possible de-
cisions vary from'set to set). In each set our results are applicable. Since the
number of sets is denumerable the resultant decision function is measurable.
We conclude: It follows from our results that if a decision procedure consists of
selecting with preassigned probabilities one of a finite number of nonrandomized
decision functions with the number of possible decisions at most denumerably
infinite, and if the possible distributions are finite in number and atomless, then
there exists an equivalent nonrandomized decision function. More general
results can be obtained for this case (where one chooses at random and in ad-
vance of the observations, one of a finite number of nonrandomized decision
functions). By application of the methods of Sections 4 and 8 the requirement
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that the number of possible decisions be denumerable can be easily removed.
The procedures are straightforward and we omit them.
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