306 ALBERT SADE

where $\alpha_k = N$, $\alpha_0 = 0$. This is the distribution of cell frequencies in a p by k contingency table with all totals fixed when there is independence (see [1], p. 278) and thus, for large values of m_{ij} at least, the usual chi-square test can be used.

REFERENCE

[1] A. M. Mood, Introduction to the Theory of Statistics, McGraw-Hill Book Co., 1950.

AN OMISSION IN NORTON'S LIST OF 7×7 SQUARES

By Albert Sade

Marseille, France

- 1. In a previous paper the value 16,942,080 for the number of reduced 7×7 squares was obtained by the author by an exhaustive method, subject to a strict control ([4], Section 20). This number exceeds Norton's ([2], Table on p. 290) by 14,112. An attempt was made in Section 21 of [4] to show that this discrepancy in the total number does not affect Norton's conjecture ([2], p. 291) that the 146 species represent the whole of the universe of 7×7 Latin squares. However, R. A. Fisher has informed the author that the discrepancy cannot be explained away in this manner. It has therefore to be attributed to a gap in Norton's list.
- 2. Now, a 147th species containing 14,112 squares can arise only from an automorph type through an operator of the order 5^k . It is easy to construct a matrix Q corresponding to such an operator as, for example, $T = (34567)^3$. Here the cycle (34567) signifies a permutation [1] of columns, a permutation of rows and a substitution of elements.

The first two rows of Q are respectively identical with the first two columns and define the substitution (12) (34567). In the remaining 5×5 squares, it is necessary that the elements of the broken diagonals follow in the natural cyclic order, except the numbers 1 and 2, which each form a broken diagonal.

The square is given below:

		1	2	3	4	5	6	7
		2			5	6	7	3
		3	4	5	7	1	2	6
Q	=	4	5	7	6	3	1	2
		5	6	2	3	7	4	1
		6	7	1	2	4	3	5
		7	3	6	1	2	5	4.

3. On replacing each row of Q by the conjugate permutation and rotating the figure through an angle of 180° about the diagonal, we obtain the square

It is easy to verify the equality

$$R(12 \cdot 36475)(12 \cdot 34567) = Q$$

in which the first factor is a permutation of columns and the second a substitution of numbers.

Thus the number of reduced squares produced by Q is

$$6(7!)^3/(3\cdot5\cdot7!6!) = 14,112,$$

which is precisely the difference mentioned in Section 1.

- **4.** The reversal of the unique intercalate 12 in Q gives a square S isomorphic with Q, and on interchanging rows and columns and the numbers 1 and 2 in S, we obtain Q again. Thus S is one of the 14,112 squares considered in Section 3 and does not give a new species. Therefore, Norton's conjecture ([2], p. 291) "that they can be enumerated by an exhaustive reversal of intercalates" is not borne out, at least for species with one intercalate. This assumption was founded on its truth for 6×6 squares; but it is to be expected that the classification of $n \times n$ squares would become more complicated with increasing n.
- **5.** On the contrary, the conclusion of S. G. Ghurye [3] is confirmed, for the square Q possesses a different "I A" from those of other species.

REFERENCES

- T. B. SPRAGUE, "A new algebra, by means of which permutations can be transformed in a variety of ways, and their properties investigated," Trans. Roy. Soc. Edinburgh, Vol. 37 (1892), pp. 399-411.
- [2] H. W. Norton, "The 7×7 squares," Annals of Eugenics, Vol. 9 (1939), pp. 269-307.
- [3] S. G. Ghurye, "A characteristic of species of 7 × 7 Latin squares," Annals of Eugenics, Vol. 14 (1948), p. 133.
- [4] A. Sade, Enumération des carrés latins. Application au 7ème ordre. Conjectures pour les ordres supérieurs, privately published.