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ON DEPENDENT TESTS OF SIGNIFICANCE IN THE ANALYSIS
OF VARIANCE!

By A. W. KiMBaLL
Oak Ridge National Laboratory

1. Introduction. Some statisticians and other practitioners of the analysis of
variance have expressed concern over the fact that many experimental designs
lead to multiple tests of significance which are not independent in the proba-
bility sense. Factorials, latin squares, lattices, etc. have the advantage of ena-
bling a research worker to test several hypotheses in one experiment, but all tests
ordinarily depend on the same estimate of population variance. It is argued
that whatever error is present in this estimate for a particular experiment will
affect all tests of hypothesis in the same manner, and one tends either to accept
or reject a large proportion of the hypotheses when the population variance is
respectively overestimated or underestimated. The difficulty can be avoided by
performing a separate experiment for each hypothesis to be tested, but this
would contradict the whole philosophy of experimental design.

This paper deals with an attempt to evaluate the effect of dependency among
the tests of significance when each experiment is treated as a unit regardless of
the number of hypotheses tested per experiment. From this point of view if all
null hypotheses are true, an error is committed if one or more of the hypotheses
are rejected. It is shown that the probability of making no errors of the first kind
in one experiment is greater when the tests are dependent than when they
are independent. For those who prefer this way of looking at the problem, the
doubts expressed in the first paragraph should be dispelled. The situation in
which risks are calculated using the hypothesis rather than the experiment as a
unit is not considered.

In the following sections it is assumed that samples are taken independently
from normal populations having the same variance and having means additively
related in a manner defined by the design of the experiment. These are the usual
assumptions associated with analysis of variance models in which the parameters
are population means (as distinguished from components of variance models).

2. Case of two dependent tests of hypothesis. We shall consider first the case
of an analysis of variance in which two hypotheses are tested using the same
error variance for each test. A well known example of this case occurs in the
analysis of variance with two criteria of classification where the effects of both
rows and colimns are to be tested. In the usual cases, formulation as a general
linear hypothesis leads to three quadratic forms, ¢, ¢», and ¢z, which are
independently distributed as x* with n; , ns, and n; degrees of freedom, respec-
tively.” The likelihood ratio statistics for testing the two hypotheses are then

F, = 0/m and F, = M
qs/n3 qs/ns

»1 This work was begun while the author was at the USAF School of Aviation Medicine,

Randolph Field, Texas.
2 For a more complete statement, see [1], p. 177.
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If the critical region for the rejection of each null hypothesis is of size a, the
probability of making no errors of the first kind is given by

{Fl < Fla, F2 < Fi'a}

where Fi, and F,, are the 100« per cent points of the distributions of F; and
F» , respectively. We shall prove® that

(1) P{Fy < Fia, F; < Faa} > P{F, < F1.}-P{F; < Fa).

Smce @1, ¢, and g; are independent, their joint density is the product of
three x* densities. Clearly (1) may be written

(2 Plg. < kgs, @2 < kegs} > Plgy < kugs}-Plge < kags},

where ki = niF1a/n3, k2 = nsFsa/ns . Expressed in integral form, (2) become

(3) _/:fl(q,ﬂx) f2(gs) fs(gs) dgs > f J1(gs) fs(gs) dq.afm 12(gs) fs(gs) dgs,

where for ¢ = 1 or 2, fi(¢gs) is the integral from ze10 to kg of a x* density with
n; degrees of freedom, while fs(gs) is the x* density function with n; degrees of
freedom. Since fi(g;) and fx(gs) are positive strictly monotonically increasing
functions of ¢;, and f5(gs) is a density function, (3) may be written

4) Elfi(gs)f2(gs)] > Elfi(gs)]- Elfa(gs)],
where the expected values are taken over the probability distribution of x’.
The 1nequahty expressed in (4) may be proved as a special case of the following

theorem.*
TureoreMm. If f(x) > 0 and g(x) > 0 are both strictly monotonically increasing

functions of a random variable x having the probability density h(z) (0 < z < ),
and if both f(x) and g(x) have finite expectations, then

E[f(z)g(x)] — E[f(2)]-Elg(z)] > 0.

Proor. We may write

E[f(z) g(x)] — E[f(x)]-Elg(2)]

It

[ 1@tow ~ Elg@n) as

=] s
say. Because of the monotonicity of g(x), there must exist a quantity z, > 0
such that g(x) = E[g(x)]. It follows that

7 - — f P S EL@)] — ¢@)}h() do

+ [ 1@ lo) ~ Bl do
. =—5L++ I2,

3 The trivial cases in which either F4 or Fa, or both are either zero or infinite are excluded.
4 The author is indebted to Dr. Max Halperin for the proof of this theorem.
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say. Since

[ 1o ~ Bo@Nh@ dx = o,

.
we must have
®

= [" 0@ - B@lh@ = = [ 9@ ~ By@ihe) da
= J,

say. Furthermore, since f(z) is a strictly monotonically increasing function of
z, it follows that

I < f(m)J, I, > f(xo)J.

Therefore, I, — I; = I > 0, and the theorem is proved.

It is obvious that the foregoing theorem may be applied directly to prove
the validity of (4). This in turn verifies (1).

Although the proof in this section was introduced by reference to a specific
model in the analysis of variance, it is clearly valid for any two F-tests of sig-
nificance which satisfy the relationships with respect to ¢;, g2, and ¢z, and in
general for any ny, ny, and ns. ‘

3. Extension to several dependent tests of hypothesis. The extension of (1)
to more than two tests of significance is straightforward. If there are three
F-tests, we must show that

(5) /0‘” fo(Q3) f1(Q3) fz(Qs) fs(Qs) dQ3
> fo f?o(ga)fs(ga) dq:{/o. J1(gs) f3(gs) dq:sfo f2(gs) f3(gs) dgs,

where fo(gs) is a function similar to fi(gs) and fa(¢s) resulting from the third test
of significance. From Section 2 we know that

©) fo " (a0 £(a0) £o(as) fi(gs) dgs > / Folas) Folas) das fo “has) £2(as) fi(gs) das,

since fo(gs) and fi(gs)f2(gs) satisfy the requirements of the theorem. But from
(3) we may make an obvious substitution in the right-hand side of (6) which
reduces it to (5). Clearly this simple procedure may be repeated as often as
necessary to prove the extension of (1) to any number of F-tests of significance
in which the numerators of the test statistics are mutually independent, and
each is independent of the denominator which is the same for all statistics.

The author wishes to thank Professors J. W. Tukey and H. Levene for helpful
suggestions in the preparation of this manusecript.
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