EXISTENCE OF CONSISTENT ESTIMATES OF THE DIRECTIONAL
PARAMETER IN A LINEAR STRUCTURAL RELATION
BETWEEN TWO VARIABLES!

By Jerzy NEYMAN
University of California, Berkeley, California

Summary. Let Z, denote the system of 8n independent pairs of measurements
(Xa, Ya),fore =1,2, ---,nand k = 1, 2, ---, 8, of two nonobservable
random variables £; and 74, known to satisfy a linear relation of the form
£ cos 0% 4 94 sin 6% — p = 0, where p is an arbitrary real number and 6* may
have any value between the limits

—ir < 6* £ im.

The purpose of the paper is to construct a class of estimates T'.(Z,) of the
parameter 6 defined as follows: when 6* = 17 then 6 = 0; otherwise § = 6*.
Each estimate T,(Z,) of the class considered converges in probability to 6 as
n — o under the following conditions: (i) except when § = 0, the variables
£ are nonnormal; (ii) any nonnormal components of the errors of measure-
ments, Xy — £s and Y4 — %4, are mutually independent, independent of
£ and of the normal components of these errors; (iii) the normal components
of the errors may be correlated but as a pair are independent of £z .

1, Introduction. Let £ and # be two random variables known to be linearly
‘connected, so that there exist two numbers, 6* and p,

(1) —ir < 6* £ %m, —wo < p< 4w,
such that the simultaneous values of £ and 7 satisfy the condition
(2) - £cos 0% + psin 6* — p = 0.

We consider the case where £ and n are not directly observable but where the
observations yield the simultaneous values of two other random variables X
and Y, connected with £ and by the equations

@ X=t+U Y=9+7V.

Here U and V are unobservable random variables interpreted as errors in
measuring £ and 7, respectively. Equation (2) is described as the linear structural
relation between the variables X and Y. Throughout the paper it is assumed
that the errors U and V may be correlated or not but, as a pair, are independent

1 This paper was prepared with the partial support of the Office of Naval Research. It
presents an extension of the contents of the Second Rietz Memorial Lecture delivered by
Jthe author at the Summer Meeting of the Institute of Mathematical Statistics at Boulder,
Colorado, September 1st, 1949. '
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of the variables £ and 5. The problem considered is that of using a sequence
{Xm, Yn} of completely independent pairs of observations on X and Y to
construct a consistent estimate of 6*. This is an old problem and a number of
the earlier attempts to solve it are described by Wald in an important paper [1].

Early attempts to obtain a consistent estimate of 6* were based exclusively
on the sample variances and covarlance of X and Y. However, as early as 1916,
Godfrey Thomson showed [2] that the same first and second moments of the
simultaneous distribution of X and Y are compatible with an infinity of different
values of 6* and that, therefore, attempts to estimate this parameter using only
second order sample moments are doomed to failure. The writings of Thomson
appear to have been overlooked and more and more studies were published
using sample moments of the first and second orders as basic functions on which
the estimates of 6* were built. In 1936 [3] it was pointed out that, should it
happen that the unobservable random variables £ and 7 and also the errors U
and V are normally distributed, then no consistent estimate of 6* is possible
because, in this event, the joint distribution of X and Y is also normal, and is
determined by moments of the first two orders. Since these moments are con-
sistent with an infinity of different values of 6*, the latter is nonidentifiable.
Between 1936 and the appearance of the paper by Wald in 1940 several studies
were published, of which we will mention one by R. G. D. Allen [4], adding more
precision to the facts just described.

Wald’s paper brought a new idea into the situation. Namely, in certain cases
something may be known about the particular values assumed by the unobserva-
ble random variable £. When this condition obtains, a method due to Wald
gives a consistent estimate of §*. This estimate is again based on the arithmetic
means of the observations on X and Y, appropriately grouped. Wald’s idea
took root and led to the paper by Housner and Brennan [5]. The same idea, a
little more developed, is at the base of papers by Berkson [6] and by Hemelrijk
[7]. However, important as these developments may be in various fields of
application, it is obvious that they do not constitute a solution of the original
problem of estimating 6* when no knowledge of the particular values assumed
by the unobservable random variables is postulated [8].

A new era in the study of the problem began following the result of Reiersgl
[9]* who proved that the case of nonidentifiability of 6* noted in 1936 is an ex-
ception rather than a rule. This discovery stimulated the paper by Scott [10]
giving a consistent estimate of 6* applicable in a new category of cases, when
no information on the particular values of £ is postulated. However, the con-
sistency of the estimate of Scott depends on the existence of a certain number
of moments of the variable £.

The present paper is concerned with the case where the errors of measurement
may be split into two components

2 Although this paper appeared in print in 1950, the author became acquainted with it in
the spring of 1948 from a lecture delivered by Reiersgl in a seminar meeting at the Statistical
Laboratory, University of California, Berkeley.
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U=U,+ U,
4 {V=V1+V2,

where U; and V; are mutually independent and, as a pair, are independent of
(Us, V,), and where U, and V, follow an arbitrary normal distribution. With
the exception of the above independence, no restriction is placed on the distribu-
tions of U, and V;. The purpose of the paper is to give an explicit construction
of an estimate of a parameter 6 (closely allied to but not identical with 6*)
which remains consistent in the most general case of identifiability, that is
when £ and 7 follow an arbitrary nonnormal distribution. No knowledge of
particular values of £ is postulated.

Since the above hypotheses admit the possibility that X and Y have no
moments at all, the conventional methods of constructing the estimate have to
be abandoned. Essentially, the estimate is defined as the abscissa which corres-
ponds to the minimum ordinate of a point on a random curve. A search for this
minimum among the roots of the derivative may be embarrassing. In fact, the
derivative need not exist at all points. Therefore, the estimate is defined as the
outcome of a specially devised interpolation procedure. The proof is based on a
lemma which seems to have an interest of its own and may be applicable in

other cases.

2. Concepts of identifiability and of consistent estimability. In order to define
the concepts of identifiability” and of consistent estimability, we shall consider a
variable point ¢ (parameter) capable of assuming any one of a set s of positions
&. Every ¢'¢ s will be described as a possible value of 8. For every ¢’ ¢ s consider
a specified set w(¢’) of distribution functions and let stand for the union of
all w(®’) for &’ ¢ s.

DerFINITION 1. We shall say that the parameter & is identifiable in w if, whatever
& ¢ s and whatever ¢ ¢ s, ¢ #= &', the corresponding sets w(d9") and w(3'") have no
elements in common.

If ¢ is identifiable in w, then to every distribution function F & w there corres-
ponds a uniquely defined value of &, say #(F) ¢ s.

From now on we shall restrict ourselves to sets w of distribution functions F
defined in the same Euclidean space of a fixed number m of dimensions. For
every F ¢ » we shall consider an m-dimensional random variable X(F) whose
distribution function is F. For n =1, 2, -- - the symbol Y,.(F) will denote the
set of n completely independent observations made on X (F). Thus, Y.(F) may
be considered as a random variable of dimensionality mn. Let y. denote a point
in the mn-dimensioned Euclidean space R.,. Consider a sequence of Borel
measurable functions {T.(y.)}, each from Rm. to s. Obviously, the result
T,.(Ya(F)) of substituting Y.(F) for y, in Ta(ya) is a random variable.

DEFINITION 2. If the parameter ¢ is identifiable in » and if, whatever be F ¢ v,

» 3 Important discussion of this concept, in a slightly different form, is due to Koopmans
and Reiersgl [11]. This paper contains a substantial bibliography.
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the sequence {T.(Ya(F))} converges in probability to $(F) as n — o, then this
sequence 1s called a consistent estimate of ¢ in w.

DEFINITION 3. If the parameter & is identifiable in w and if there exists a con-
sistent estimate of ¢ in w, then we shall say that ¢ is consistently estimable in .

3. Identifiability of the directional parameter in the linear structural relation
of two random variables. Returning to the general situation described in Section
1, denote by 6 the parameter defined as follows:

if —ir < 6* < im, then 60 = 6%
if 6* = im, then 6 = 0.

The parameter  thus defined will be called the directional parameter of the
structural relation (2).

Denote by S the set of possible values of 6, —37 < 6 < 3=. For every value
& of this set we shall now define a set Q(&) of joint distributions of the variables
X and Y of formulae (3). We begin by defining ©(0).

If § = O then either 6* = 0 or 6* = Ix. Accordingly, 2(0) is defined as the
union of the two sets of distributions, @*(0) and @*(3), each corresponding to a
particular value of 6*. If 6* = 0 then formula (2) implies that £ is degenerate
and ¢ = p. Assume the following hypotheses:

(a) The variable 5 has an arbitrary distribution.

(b) U= U, + Usand V = V, + V., where U, and V; are mutually inde-
pendent, as a pair are independent of £ and » but otherwise arbitrarily dis-
tributed, and where (U, , V) represent a pair of arbitrary normal variables,
independent of the triplet », Uy, V1 . In particular, U; and V, may be correlated.

() —0 < p <+,

Obviously, every specific set of hypotheses regarding 5, Uy, V1, Uz, Vaand p
implies a specific distribution of the pair X, Y. Then Q*(0) denotes the set of
all such distributions.

In order to define @*(r) we notice that, if 6* = 3= then (2) implies that 9
is degenerate and n = p. @*(3r) is defined to contain every joint distribution of
X and Y implied by an arbitrary assumption regarding the distribution of &
and by hypotheses (b) and (c).

As mentioned ©(0) is the union of 2*(0) and Q*(3). However, the reader will
verify easily that the sets 2*(0) and @*(3) coincide. Therefore 6* is not identifi-
able in 2(0).

For every possible value & of 6, other than & = 0, the set Q(3) is defined to
contain every joint distribution of X and Y defined by formulae (3), implied
by the assumption that £ follows an arbitrary nondegenerate, nonnormal dis-
tribution, that 5 is connected with £ by equation (2) with p having an arbitrary
real value, and that the errors U and V are arbitra,rily distributed, subject to
condition (b). It will be seen that the equality § = 0 characterizes the case
where at least one of the variables £ and 5 is degenerate so that, instead of being
linearly connected, these variables may be considered as mutually independent.
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Reiersgl proved [9] that the parameter 0 is identifiable in the set @ of distribu-
tions of X and Y defined as the union of all sets 2(¢#) for —ir < ¢ < ir. Since
it is known that the restriction of nonnormality imposed on ¢ and n when ¢ # 0
cannot be relaxed without destroying the identifiability of 6, it follows that Q
is'the broadest set of joint distributions of X and ¥ within which 6 is identifiable,
consistent with the assumption that the errors of measurement U and V satisfy
assumption (b). The purpose of the present paper is to provide an explicit
construction of an estimate of 6 consistent in Q.

4. A few preliminaries. It will be convenient to use the concept of uniform
convergence in probability. Let G(z) denote a function defined over a non-
degenerate closed interval x ¢ [a, b]. Further, let {Z,} be a infinite sequence of
random variables and {G.(Z., z)} a sequence of functions of two arguments
Z. and z. Each G,(Z,, x) is assumed to be defined for every z ¢ [a, b] and for
every possible value of the random variable Z, . Furthermore, when z is fixed,
Gw(Z, , z) is a Borel measurable function of Z, . Thus, it is 2 random variable.

DeriNiTION 4. We shall say that the sequence {Gn(Z, , x)} of random functions
converges in probability to G(x) uniformly in [a, bl, if there exists a function m(n)
defined for all m = 1, 2, - -+ such that
5) lim m(n) = «

and such that, whatever ¢ > 0,
(6) lim (m(n) sup] P{|Gn(Zn,z) — G(x) | > 5}) = 0.

7n—>0 zelad
Every function m(n) satisfying the above conditions will be described as the
norm of uniform convergence of {G.(Z., x)}. Obviously, it may always be as-
sumed that the norm m(n) assumes only positive integer values.
In order to illustrate this concept, assume that for every z ¢ [a, b] and for
everyn = 1, 2, - -+ we have

) EGw(Zn , )] = G(x)
and that the variance o5 (x) of Ga(Z, , 2) is bounded by

| p—

8 oaz) < - o0,

where o9 > 0 is a constant. Using the inequality of Bienaymé-Tchebycheff we
may write

2 2
©) P{|Gu(Zn, 1) — G@) | > ¢} < ""e(f) <7
for every z ¢ [a, b). Thus

y 2
(10) sup P{ |Gn<Zn7 1‘) - G(x)[ > E} < %,

zelab]
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and it is seen that, under conditions (7) and (8), the sequence {G.(Z., )}
converges in probability to G(z) uniformly in [a, b]. For example, the norm of
uniform convergence may be defined as the greatest integer not exceeding the
square root of n, .

(1) m(n) = [v/n).

Another convenient concept will be described as the m-lattice minimal point
of a function f. This is defined as follows. Let [a, b] denote a nondegenerate
closed interval and f(z) a real function defined on z ¢ [a, b]. Let m be an arbitrary

integer m > 1 and
b—a
(12) amk—a'l"km_l

for k=0,1,+++,m =1

We shall say that the m points @, form the m-lattice on [a, b]. Now consider the
values f(an:) of f(x) corresponding to the points of the m-lattice and use the
symbol f, to denote the smallest of these. In general, there will be r points of
the lattice, say

(13) Omky < Omkg < °‘" < Qmky

such that f(@mi;) = fm . Let p = [(r 4+ 1)/2]. The point @, will be described as
the m-lattice minimal point of the function f(x). It will be denoted by M .,(f(x)).

FuNDAMENTAL LEMMA. If the real function G(x) s defined and continuous on a
nondegenerate closed inierval [a, b] in which it has an absolute minimum G(x,)
attained ot a single point xo , if {Z.} is a sequence of random variables and if the
sequence of real random functions {Gn(Z., x)} converges to G(x) uniformly in
[@, b] with an integer valued norm m(n), then the sequence {M mwy|Gn(Zn , )]} of
m(n)-lattice minimal points of G.(Z, , x) converges in probability to xq .

Proor. Assume that the conditions of the lemma are satisfied. The proof
consists in showing that, whatever ¢ > 0 and 4 > 0, a number N(e, ) can be
found such that the inequality n > N(e, n) implies

(14) P{| Mn)[Gr(Za, )] — 20| > €} < 7.

Fix € and 5 and denote by g the minimum value of G(z) attained in the part of
la, b] outside of the open interval |z — x| < e. Obviously g > G(x). Let § < ¢
be a sufficiently small positive number such that | z — z, | < & implies

(15) ' G(z) = Q(z) < Qxo) + 5(g — G(20)).
Denote by N; the smallest integer such that n > N; implies
b—a

and by N, the smallest integer such that n > N, implies
(i7) mm) sup P{|Gn(Z.,z) — G(x)| > 3(g — Gx))} < 7.

zela,b]



LINEAR STRUCTURAL RELATION 503

Finally, let N(e, n) = max (N1, N.). It is easy to see that for n > N(e, »),
the inequality (14) is satisfied. We notice first that with n > N(¢, ) = N, the
interval (zo — 8, xp + &) will include some points of the m(n)-lattice. Further,
in order that | Mum[Ga(Zn, )] — 70| > € it is necessary that at least one of
the values of G.(Z., z) assumed at points of the m(n)-lattice outside of the
interval (mo — €, 2o + €) not exceeded any of the values assumed by this func-
tion on the m(n)-lattice within (xo — 8, 7o + 8). But outside of (zo — €, 0 + €)
we have

(18) G(z0) < g = G(2)
and inside of (zo — 8, 2o + 9)
(19) G(x) < G(xo) + 3(g — G(x0))-

It follows that, if at each point of the m(n)-lattice the random function
Gn(Z, , am) differs from G(am:) by at most (g — G(x)), then

I Mm(n)[Gn(Zn: z)] — xol Se

Thus, the probability that | Mmml[Gn(Zs, )] — zo| > € is at most equal to
the probability, say =, that for at least one point amx of the m(n)-lattice
[Ga(Za, am) — Glams) | > 3(g — G(x0)). However,
m(n)—1
(20) k=0
< m(n) sup. P{|Gn(Zn, z) — G(2)| > 3(g — G(x0))} <19

zelab

because of (17), and the proof of the lemma is completed.

B. Consistent estimates of the directional parameter of a linear structural
relation between two variables. We return to the problem of the consistent
estimation of the directional parameter 8 of the structural relation (2). The
parameter 6 was defined in Section 3. Also it will be assumed that the joint
distribution function F of the variables X and Y belongs to the set Q defined in
Section 3. Consider a set of N(n) = 8n independent observations to be made on
the pair of variables X and Y. These observations will be divided into n eight-

tuples and denoted by (X;;, Yi;) for:i =1,2, ---,nandj = 1,2, ---, 8.
The 7th eight-tuple will be denoted by Z ¥ . The totality of n eight-tuples will be
denoted by Z, . '

In defining the estimate of 8 we shall need three (identical or different) prob-
ability density functions w;(z), ws(x), and ws(z), and their characteristic func- .
tions, say ®;(), ®:(t), and ®s(t), respectively. These probability density func-
tions can be selected arbitrarily out of a class I' which we shall define by the
following conditions: every w(z) ¢ T' is symmetric about zero, w(—=z) = w(zx),
and there exists a positive number a such that w(z) > 0 for every |z| < a.
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It will be observed that the symmetry of ws(x) implies that the corresponding
characteristic function ®,(f) is real.

Speaking in terms of the characteristic functions &, , ®, , ®;, we shall define
a class C of consistent estimates of 6. Any particular choice of the functions
®, , &, and ®; will determine a particular estimate of the class C. For example,
we may choose to consider the following probability densities of class I': (1)
the normal probability density with zero mean and unit variance, (2) the Cauchy
probability density with unit scale and zero location parameter, and (3) the
rectangular probability density between —a and +a. Each of the corresponding
characteristic functions, exp {—2f'}, exp {— |¢|}, and sin at/at, respectively,
may be taken to represent either ®; or &, or &;, or any two, or all three &, =
P, = Ps.

Assume that the choice of the functions ®,(f) is made. Denote by ¢ an arbi-
trary number between the limits —37 < ¢ = +3#. For the kth eight-tuple of
observations define the following symbols

AZ,®) = &:[(Xia — Xie + Xus — Xu) cos &
4+ (Y — YVie 4 Yis — Vi) sin 818:(Xia — Xio + Xis — Xio),
@21) {B(Z¥) = &Y — Yie + Yo — Xuo),
C(Z¥) = ®(Yia — Yie —Yis + Vo),
D(Z{) = &(Yis — Y + Vis — Yio),

(22) H(Z: ,9) = A%, 9){B(Zi) — 2C(Z) + D(&)}.
Finally, let )
(23) GolZn, ®) = 2 HZE ).
Put m(n) = [v/n] and consider the m(n)-lattice on the closed interval

[—1x, +1x]. For every fixed value Z,, of Z, we consider @.(Z~ , 9) as a function
of & & [—im, +3in] and then M,y(Gn(Zn, 9)) will denote its m(n)-lattice
minimal point. After these preliminaries we define the estimate T'.(Z.) of 8
as follows.

1
G If G.(Z,,0) = —\4/—1;, then T.(Z,) = 0.
(24) ,
(i) I Gu(Z,,0) > w7 then T.(Z,) = MuwlGa(Zs, 9)].

TuEoREM. The sequence {T,(Z.)} represents an estimate of 6 consistent in Q.

Proor. We begin by noticing that, since the symbols in (21) are defined in
terms of characteristic functions, their absolute values cannot exceed unity.
Therefore,

. (25) |H(Zi ,9)| < 4,
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and thus all moments of H(Z; , ¢) exist. In particular, we shall be interested in
the first moment, say

(26) E{H(Z , 9)} = E(Gu(Zn, ®)} = G,

and in the variance, say ¢°(&), of b(Zf , ). Obviously, ¢*(%) < 16. Since the
successive variables H(Z; , &) are completely independent, the variance of
Go(Z, , ), say oa(d), is

o'(9) < 16

(2) @) = 2

?
and it follows that the sequence {G.(Z., #)} converges in probability to G(&)
uniformly in [—%w, 47]. As we have seen before (see Section 4) the function
m(n) = [v/n] may be taken as the norm of the uniform convergence.

Our next step in the proof consists in showing that the function G(#) has the
following properties.

(A) If the random variables X and Y follow a distribution F ¢ @ such that
8(F) = 0, then G(#) = 0 for all ¢ ¢ [—%m, i« including & = 0.

(B) If 0(F) # 0, then G(#) > O for all & ¢ [—3m, 3x] with the exception of
¢ = 6(F) where G[O(F)] = 0.

(C) G(¢) is continuous for & ¢ [— 3, 21r]

Once these three properties of G(&) are established, the proof of the theorem
is completed as follows. Assume first that 6(F) = 0. Then, by the theorem of
Bienaymé-Tchebycheff,

{Gn(zn’ 0) = \/—} = P{ |Ga(Z4,0)| = 71;}

(28)
>1-az(o)\/ﬁ;1—\—1%.

n

The definition of 7.(Z,) implies that it is equal to zero whenever

(29) Gn(Zn, 0) = \/—, unconditionally,
and also whenever

1
(30) ) Gn(Zru 0) > \7‘1;‘ and Mm(n)[Gn(Zny l’)] = 0.
Consequently, the probability
31) PITa(Z) = 0} 2 P{Gu(Zn,0) < o=} 2 1 — =
( { n\&n) = } n\Lny \/ \/n

and tends to unity as n — .
Assume now that 6(F) £ 0. According to the fundamental lemma, in this

case M mny(Gu(Zn , 8)) converges in probability to 8(F). To prove that the same
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is trug for T.(Z,) it is sufficient to show that the probability P{T.(Z.) #
M y[Gn(Z, , 9)]} tends to zero as n — . Obviously this last probability does
not exceed the probability that G,.(Z., 0) < n~*. According to property (B)
we have G(0) > 0 in the case considered. When n > G(0)™*, we have

1 1
P{G,.<z,,, 0 < 7;} < P{IG,.(Zm 0) = 6(0) | > G(0) — %}

16
< ’

1 2
7 <G(0) - \‘/’;b>
and it follows that, as n — o, the probability that T,.(Z,) will coincide with
M ny(Gu(Z, , &) tends to unity. It is seen that the properties (A), (B), and
(C) of the function G(¢#) combined with (26) imply that, whatever F ¢ Q, the
estimate {7T.(Z,)} converges in probability to 6(F) or, in other words, that
T.(Z,) is an estimate of 8 consistent in Q. Therefore, in order to prove the theo-
rem, we shall establish that the expectation (26) has the properties (A), (B),
and (C). This will be done in Section 6 in the following order. First we shall
use the postulated properties of the observable random variables X and Y and
define a function G(d#) having the properties (A), (B), and (C). Next we shall
show that the function G(#) so defined coincides with the expectation (26).

(32)

6. Structural definition of G(&#). The structural definition of G(¢) is based on
the properties of the characteristic function, say ¢(f , t3), of the joint distribu-
tion of X and Y. According to the usual definition

(33) ot , t) = BT,
where

X = £+ Ul + U2’
(34)

Y="7+V1+V2-

Assume first that 8 = 0. In this case the components ¢ + U; and 4 + V; are
mutually independent and the possible dependence of X and Y will be due to
the correlation that may exist between the normal components of errors U,
and V; . Since the logarithm of the characteristic function of two normal variables
is a polynomial of the second order, when 6 = 0 the characteristic function of
X and Y has the form, say

(35) ¢(t1 ty | § = 0) — erﬁ1(t;)+h(tz)+7htz
) )

where ¥.(t;) is a function of ¢; alone, ¢ = 1, 2. We note this form of ¢(¢,, ¢ | 6 = 0)
for future reference and proceed to the next case, where 6 # 0.
In this case § = 6* and the structural relation (2) may be solved with respect to

¥

(36) n = i,; — £ cot 6.
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Substituting this expression into (34) and denoting the logarithm of the charac-
teristic function of ¢ by x(f), we have

t1—t ) t
(37) ¢(t1 , t2) — ex( 1—t2cotd) +¥1(t1) +¥a(ta) +rty 2’

where the symbols ¢, and ¢, are again used to denote functions of one argument
only, either ¢, or ¢, . These functions in (37) have a meaning different from that
in (35). However, this difference is of no importance because in both cases the
essential point is that ¢, depends on # but not on ¢, and that ¢, depends on ¢,
but not on ¢ . It will be convenient to consider that ¢(¢;, &) always has the
form (37) with the understanding that, when 8 = 0, then x(f) = 0.

Since Y1 (t), ¥=(¢) and x(f) are defined in terms of logarithms of characteristic
functions, they vanish at ¢ = 0 and are continuous at this point. In addition,
we shall use the following important property of x(¢). This is that, whenever
6(F) # 0, then however small § > 0, the function x(f) cannot coincide with a
polynomial of second order on the whole of the interval (—4, §). This property
is implied by the hypothesis that, whenever § # 0 and therefore x(f) # 0, then
£ is not normally distributed. In fact, assume that there exists a positive number
8* such that x(¢) = a + bt + ¢f for all | ¢| < &*. It is easy to see that in this
case all the derivatives of the characteristic function of ¢ would exist at ¢ = 0
and would determine all the moments of ¢. Furthermore, these moments would
coincide with the moments of a normal distribution, from which it would follow
that £ itself is normally distributed, contrary to the hypothesis. Thus it follows
that, if x(¢) coincides with a quadratic in ¢ over an interval, this interval cannot
include ¢t = 0.

Select a number & ¢ [—3m, ix] and three arbitrary real numbers ¢, 71, 72.
We shall consider ¢(¢, , £) at the following eight points which, to abbreviate the
formulae, will be denoted by lower case Roman numerals. Thus, for example,
#(1) will denote the value of ¢(¢1, &) evaluated at the first of the eight points.
The coordinates of the first four points are

@) th =tcosd + 7, bh=tsind + 7,
(i1) th =tcosd 4+ 74, ty = tsin d,
(iii) t, = tcos 9, t, =tsind + 7,
@iv) ty = tcos &, fo = ¢ sin d.

The coordinates of points (v) through (viii) are obtained from those of (i) to
(iv), respectively, by substituting ¢ = 0. Thus

(V) t1= T1, t2= T2,
(vi) h=mn, &t=0,
(Vll) t1 = 0, tz = T2,

(viii) L =0, t = 0.
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Obviously ¢(viii) = 1. Now we form the function

(38) h(8,t, 71, m2) = () (iV)p(vi)p(vii) — (i) (iii)ep(v)p(viii).
Easy algebra gives

(39) h(d, t, 11, 12) = N1, — ¥, 7;,

where

¥y = exp {Ya(t cos & + 71) + Ya(t cos 9) + Ya(r)

| + Valtsin & + 72) + va(t sin 9) + va(r)

(40) < + [t cos & + m)(Esin & + 72) + £ cos & sin ¥},
¥, = exp {x(4t + 71 — 73 cot 6) + x(4t) + x(r1) + x(—72cot )},
\¥; = exp {x(4¢+ 1) + x(0) + x(At — 5 cot6) + x(r1 — T2 cot 6)},

with

_ sin (CEES))

(41) 4 sin @

For any z > 0 we shall use the symbol o(z) to denote the set of triplets (¢, v1, 72)
such that |¢| < z, | 1| < z and | 2] < 2. Because of the properties of the
functions v, , Y5, and x there exists a positive number § such that within ¢(5)
the functions ¥; and ¥; do not vanish. Consequently, for ({, 1, 72) € o(5) we
may write

h("}, ty 71, 7'2) = ¥, ¥; <22 - 1)
\ &

42) wlwa(exp{[xmt b= ra 00t 6) — (Al + 1)

—x(At — 73 cot 6) + x(4Af)]
— [x(r1 — 12 cot 0) — x(r1) — x(—=m2 cot 6) + x(0)]} — 1>-

The idea of the function h(#, ¢, 71, 75) originated from the paper of Reiersgl
and this function is the key to the whole construction of the estimate T'x(Z.).
The function A(#, ¢, 71, 72) is defined as a combination of values of the character-
istic function of the observable random variables X and Y at eight arbitrarily
selected points. Consequently, the definition of A(¥, ¢, 71, 7o) is independent of
the value of 8(F). However, the properties of h(&, t, 71, 72) do depend on 6(F),
as follows.

(a) If 6(F) = 0, then k(& t, 71, 72) = O for all values of the four arguments
de[—3im irjand —o < ¢, 7, 12 < + 0.

(b) If 8(F) ¢ 0 and ¢ = 6(F), then h(#, t, 71, 75) = O for all combinations of
Yalues of 1, 11, 72, — 0 < ¢ 71, 72 < F 0.
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(c) If 8(F) # 0 and ¢ = 0(F) then, whatever 8, > 0, the cube ¢(8;) contains
a subset of points (¢, 71, 72) of positive three-dimensional measure within which
h(t}, t, T1, Tz) # 0.

In order to prove (a) we notice, that the case 6(F) = 0 is characterized by the
identity x(¢f) = 0. Making this substitution in (42) it is immediately seen that,
in this particular case, h(d, ¢, 71, 72) = 0 for all combinations of values of the
four arguments.

In order to prove (b) we notice that ¢ = 6(F) implies
sin (& — 6)

sin =0

43) A=
Then (42) implies that h(8, ¢, 71, 72) = 0 for all combinations of values of the
three arguments ¢, 71, 72 .

In proving (c) we shall use the hypothesis that £ is not a normal variable and
that, therefore, however small § > 0, the function x(¢) cannot coincide with a
polynomial of second order on the whole of the interval | | < é. Assume that
the assertion (c) is not true and that, with ¢ # 6(F) 5 0, there exists a positive
number 6* such that, for (¢, 71, 72) € ¢(8%) we have identically k(, ¢, 71, 72) = 0.
Then this identity will also hold for all sufficiently small | ¢ | and | 7, | and

(44) 72 = —7 tan 0.

Within the common part of ¢(8) and ¢(8*) the functions ¥; and ¥; do not vanish.
Therefore, we must conclude that the result of substituting (44) into ¥, and
¥; must give ¥,/¥; = 1 for all sufficiently small | ¢| and | 7, |. This however,
implies that

(45) x(4t + 2m) — 2x(4t + ) + x(40) = x(2n) — 2x(r1) + x(0).

It will be seen that the expressions on both sides of this identity represent second
differences of x(t) at steps , evaluated at points A¢ and zero, respectively. Thus,
the assumption k(d, ¢, 71, 72) = 01in (¢, 71, 72) € o(6*) leads to the conclusion
that there must exist a certain vicinity W of the point { = 0 where, however
small | 7, | , the second difference of the function x(f) computed at steps 1 has
a value possibly depending on 7, but not on the point at which it is evaluated.
Since x(t) is continuous, it must then coincide with a polynomial of second order
in ¢ over the whole interval W. This, however, is contrary to the hypothesis.
Therefore, if ¢ # 0(F) Ie 0, whatever be § > 0 the cube ¢(5) must contain at
least one point ¢/, 1, 75 such that (3, ¢/, 1, 75) # 0. Since h is continuous in
@, 71, T2) it then follows that ¢(8) must contain a set of three-dimensional posi-
tive measure where k(8 ¢, 71, 72) 5 0. This establishes (c).

When h(d, t, 71, m2) ¥ 0, it may be represented by a real or by a complex
number. It is known that by changing the signs of the arguments of any char-
acteristic function one obtains a value which is conjugate to the original value
of this characteristic function. It is easy to see that the same applies to

“h(, t, 71 , 72). Therefore, the product

(46) h(0y t; T1, Tz)h(‘l’, —t’ —T1, —72) = | h(0) t’ T1, 72) l T = 9(0; t; T1, 7'2)$
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say, is equal to the square of the modulus of A(d, ¢, 71, 72). It follows from the
preceding that the function g(&, ¢, 71, 72) is real valued, nonnegative and con-
tinuous in (¢, 71, 2). Also, it is easy to see that g(&, ¢, 71, 72) cannot be greater
than 4. Furthermore, if (F) = 0 then g is identically zero. Also, it is zero iden-
tically in ¢, 71, 72 if 0(F) # 0 but = 6(F).

On the other hand, if 8(F) ¢ 0 and & # 6(F), then in every vicinity of { =
1 = 7, = 0 there is a set of positive three-dimensional measure where
g(8, ¢, 71, ) > 0. Now, let wy(z), wo(z) and ws(x) be three (identical or different)
probability density functions of class T' (that is, each symmetric about z = 0
and nonvanishing in a nondegenerate interval | z | < a). Also, let

+o0 +o0 +00
47 G = [w wy (1) _[ . we(T1) [ . wy(12)g (3, 1, 71, 72) db dry drs.

It is obvious that, whatever the chosen probability density functions w; , ws,
and ws ,

if 6(F) = 0, then G(8) = O for every & ¢ [—3m, 3],
if 0(F) % 0 and ¢ = 9(F), then G(¥) = 0,
if 6(F) # 0 and ¢ # 6(F), then G(¢) > 0.

Also, because of the definition of g(8, ¢, 71, 72) in terms of the characteristic
function of X and Y, G(&) is a continuous function of &. It follows that the
function G defined in formula (47) possesses the properties (A), (B), and (C)
mentioned at an earlier stage of the proof of the theorem (Section 5). In order
to complete this proof, we now show that, if ®:(¢) denotes the characteristic
function of wi(z), k¥ = 1, 2, 3, then the expectation of H (Zr 0), defined by
(22) and (21), is equal to G(z?) of formula (47), identically in & & [— 3w, 37].

For this purpose we return to the function g(8, ¢, 71, 72) and reexamine its
definition (46) in terms of h(d, ¢, 71, 72) and ultimately in terms of the charac-
teristic function ¢(4; , t;) as in (38). It is seen that g(d, ¢, 71, 72) and G(¢) may
be written conveniently as linear combinations of four terms each, say

(48) Q@) = Gi(¥) — Go(®) — G5(9) + Gu(¥),
(49) 9(0; i, 11, 7'2) =0 — g — Js + s,
where, for k = 1, 2, 3, 4,

(50) @) = [[[ genOuntrwatr) de drs dr,

and g; stands for the product of from six to eight factors, each factor representing
the characteristic function of X and Y evaluated at specified values of the two
arguments. Upon inspecting (46) and (38) the reader will have no difficulty in
writing down the expressions of the four components g; . To save space we shall
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reproduce only the expression of g; represented by the product of eight factors,
as follows:

1= ¢(tcosd + 7,tsin & + r)p(—tcosd — 7y, —tsind — 7o)
(51) ¢(¢ cos &, ¢ gin #)p(—1£ cos ¢, —i sin &)
“¢(71, 0)¢(— 71, 0)6(0, 72)9(0, —72).

Consider the kth eight-tuple of independent observations on X and Y and let
(X%; , Yi;) represent the jth pair of this eight-tuple. Obviously, we may write

o(tcosd + 71,tsin & + 73)
= Elexp {#t(Xwn cos & + Yy sin &) + ¢71 X + ¢72Y}l,
¢o(—tcosd — 1, —tsind — 1)
= Elexp {—#(Xi2 cos & + Yiasin ) — i71 Xpe — 172V ia}],

etc. Because of the, complete independence of all the eight pairs (Xi; , Y%;), the
expression of g; may be written as the expectation of a single exponential,

g1 = Elexp {#t((Xs1 — Xie + Xis — X) cos &
(54) + (Ykl - Yk2 + Yk8 - Yk4) Sili 0) + ’I:Tl(Xkl bt sz + st - st)
+ iTz(Ykl — Y+ Y — Yks)}]

This expectation is just a convenient symbol for an eightfold Stieltjes integral
with respect to the distribution function F(x;, y;) of each pair (Xi;, Y&;).
Thus the component Gi(#) of G(#) is an elevenfold integral. Since this integral
is absolutely convergent, we may invert the order of integration and write

(52)

(53)

+oo .
G'l(t?) =E <f eu((x1—xz+xs—x4)eos-7+(Y1—Yz+Ya—Y4)sm-7)wl(t) dt
—o0
+o
(55) . f R L L DI i
—00

+o0
iT2(Y 1—Y 2+ ¥ 1—Y
[ PUEIS St iag S)W3(Tz) d1'2>,
L

or, remembering the definition of ®, , ®, , and ¥;,
Gi(®) = E{®[(X; — X + X5 — X,) cos &
(56) + (Y1 — Y2+ Yy — Y, sin 9]
B(X; — Xo+ X5 — Xo)®5(Y1 — Yo+ V7 — Yy)},
or, finally
(57) G:\(9) = ElA(ZE , 9)B(Z),
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with the symbols A(Z¢ , ¢) and B(Zx) defined for every eight-tuple of com-
pletely independent observations as in formulae (21). Similarly it is easy to
show that

Gy(9) = G5(8) = ElA(Za, 7z,
58) { ) C)) [4(Zyy , 9)C(Z)]

Gy(¥) = E[AZx , 9)D(Z)].
This, however, implies that
(59) G = EH(Zx , 9],

and the proof of the theorem is completed.

7. Acknowledgment. The results presented in this paper differ in several
respects from the contents of the Second Rietz Memorial Lecture of 1949.
Among other things it was possible to remove a certain restrictiveness of the
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