ON THE POWER FUNCTION OF TESTS OF RANDOMNESS BASED
ON RUNS UP AND DOWN
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1. Summary. It is shown that various statistics based on the number of runs
up and down have an asymptotic multivariate normal distribution under a
number of diflerent alternatives to randomness. The concept of likelihood ratio
statistics is extended to give a method for deciding what function of these runs
should be used, and it is shown that the asymptotic power of these tests depends
only on the covariance matrix, calculated under the hypothesis of randomness,
and the expected values, calculated under the alternative hypothesis. A general
method is given for calculating these expected values when the observations are
independent, and these calculations are carried through for a constant shift in
location from one observation to the next and for normal and rectangular popu-
lations.

2. Introduction. Let the vector random variable X™ = X, --- , X, have
the joint cumulative distribution function F™ = F™ (z,, - - -, z,). Throughout
this paper we will suppose that F™ is continuous. Let @, be the class of all con-
tinuous F™, and let w, be the class of all F™.of the form F™ = 1IF @ (z,), where
F is some continuous univariate distribution function. By the hypothesis of
randomness, H,, we mean the hypothesis that F™, known to belong to Q,,
actually belongs to w, . The statistical problem is to test H, on the basis of one
observation ™ on X™.

Many methods of testing this hypothesis have been proposed. The most
usual procedure has been for the statistician to devise some statistic whose
distribution under the null hypothesis could be obtained without too much
trouble. Then if extreme values of this statistic were observed, the hypothesis
of randomness was rejected. Occasionally the appropriateness of the statistic
would be considered. A common type of reasoning is that such and such a test
classifies as random a set of numbers that are ‘“‘obviously” nonrandom, or vice
versa. Now suppose we replace the original observations by their ranks. Then
under the hypothesis of randomness all sequences of ranks are equally likely and
each is as “random” as the next. On the other hand, if we look long enough, we
will find something very peculiar and nonrandom about any given sequence,
and can prove that the probability of this peculiarity arising by chance is very
small. The difficulty is that randomness is not a property of a sequence of num-
bers, but of the process that produced them, that is, of F™. Hence what we
really want is a test with a high probability of rejecting Ho, whenever F™ ¢ w,.
Unfortunately no such test exists. In fact, given any critical region of size «,
there exists F™ ¢ w, for which the probability of the critical region is zero. Two
ways may be found out of this dilemma. The more satisfying from a theoretical
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POWER OF TESTS OF RANDOMNESS 35

point of view is to restrict F™ to a class of alternatives especially feared, and to
choose a statistic with reasonably good power against these alternatives. The
second method is to restrict ourselves arbitrarily to a definite class of statistics
which has desirable properties such as convenience, and then to choose an opti-
mum statistic from this class. Both approaches will be used in this paper. Which-
ever approach is chosen, it would be desirable to have a method of constructing
a good test. We will exhibit one such method based on the second approach.
However, in most cases no method of constructing a good test is known. It then
becomes necessary to investigate the behavior of the power function of a number
of previously devised tests, and to choose the one having the most desirable
power function for the purpose in hand. In the present paper a start will be
made in this direction for statistics based on runs up and down. These statistics
have been independently discovered by a number of different authors and have
been widely advocated for testing randomness.

The continuity of F insures that, under H,, Prob {X; = X;} = 0 for all
¢ % j. This will also be true for F* € Q, , for the type of distributions ordinarily
considered. We will therefore assume that the observations (z;, ---, z,) are
distinct. Let B* be the sequence of signs (4 or —) of the differences (z;y; — z.)
fort =1, ---,n — 1. A sequence of p/successive + (—) signs not immediately
preceded or followed by a + (—) sign is called a run up (down) of length p. The
term “runs up and down” (or u-runs) applies to both runs up and runs down.
As an example, if the observations are (57 3 4 8 1), then B* = (+ — + + —),
there are four u-runs: one run up of length one, one up of length two, and two
down of length one.

Let s be the number of runs up, s, the number of runs up of length p, and s’,
the number of runs up of length p or more in B*. Let ¢, ¢, , and ¢, be similarly
defined for runs down, and let r = s + ¢, 7, = s, + t,, ', = 85 + t, . Let k equal
the total number of 4 signs in B*. The r’s, s’s, #s and k will be called u-run
statistics. Levene and Wolfowitz [1] have given the exact covariance matrix and
expected values of the ’s, and Moore and Wallis [2] have given E(k) = 1 (n — 1)
and (k) = (n + 1)/12.

3. Asymptotic distributions. When H, is true, certain recurrence relations for
the exact distribution of a single u-run statistic are known, and Gleissberg [3]
has tabulated the exact value of Prob (r — 1 > z) for n < 25 (Wallis and Moore
[4] having given this for n < 12), but no usable exact distribution function is
known or is likely to be found. Hence it is important to have asymptotic for-
mulas. Wolfowitz [5] proved that under H, any fixed set of u-run statistics have
a joint multivariate normal distribution in the limit. (If the set chosen are
linearly dependent in the limit, their joint limit distribution will be degenerate.)
We will indicate Wolfowitz’s proof for the total runs. r. There is no essential
difficulty in generalizing to a set of u-run statistics.

Let the sequence of observations be broken up into subsequences

3.1 T(i-Datl,  T(-Dat2, *** » Tia (G=1,---,8),
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where & = n%, 8 = n! approximately. Let #” be the number of runs in the fth
subsequence. The partitioning of the original sequence breaks up some runs
and forms some new ones, but at most two runs in each subsection are affected,

so that

B
(3.2) DD — rI < 28.

=1

But under H, we have (1) #” and ” are independent for i = 7; (2) r” has the
same distribution for all j; and () 1/ad’[r'”] and 1/a’ur®], where ur'”] is the
fourth moment of #” about its mean, can be shown to approach fixed limits
# 0 as n — . Hence the Lyapunov theorem applies and

Z {r(:’) _ E[r(i)]}
Vn

is asymptotically normally distributed with zero mean and finite variance. But

(3.3) |2 :(j_— rl < \/_ = 207 5 g,
n

so r is likewise asymptotically normal.

Apparently it has not previously been noted that randomness of the sequence
{X1, -+, Xa} is not necessary for the validity of this proof. We will consider
a number of alternatives under which the limit distribution of u-run statistics
is normal.

(a) We will say there is a linear trend if F™ = [[F® (z; — 6.), with 6; = 6
Then (1), (2) and (3) above will hold. Even if §; is only approximately equal to
16, we will still have asymptotic normality, although condition (2) will not hold.

(b) If the scale of the distribution changes by a constant factor from one
observation to the next, that is,

(3.4) F® = [[F®
with
(3.5) FP (@) = F$, (ca) (c > 0)

we have normality in the limit. If the scale increases or decreases monotonically
at less than this exponential rate, the limit distribution is the same as under H, .
(¢) We will say there is a cycle of period p if
nlp
(3.6) F® = II1 FP(2G-npr1, T-npiz, ** , Tip)-
=

A special case of this is
(37) F® = I F{ (),
(20
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with
(3.8) F{ = FP (¢ = j mod p).

Here again conditions (1), (2) and {3) hold approximately for large n and exactly
if n/p is an integer.
(d) If the X satisfy a stable linear stochastic difference equation, for example,

(3.9) X =6X:+ Ui (8] < 1),

where the random variables U are independent and equidistributed, the methods
used by 8. Bernstein [6] to prove the Central Limit Theorem for Markov chains
can be used to prove asymptotic normality.

(e) The unstable stochastic difference equation X3 = X + U4, is of special
interest since the exact distributions are known. They are the same as the dis-
tributions of runs of two kinds of elements drawn from a binomial population
which were given by Mood [7].

(f) If the marginal distributions of the X; are such that we would have asymp-
totic normality if the X; were independent, the asymptotic normality will still
hold under the weaker condition that Xy, ---, X; are independent of X,
Xju, -, X for all ¢ and j with j — ¢ greater than some positive constant.

It is clear that these special cases are not exhaustive, but they seem to cover
the most interesting possibilities. If some other F™ should prove of interest, it
should be fairly easy to see whether the conditions for normality are fulfilled.

4. The likelihood ratio statistic. Let p(¢™ | F*™) be the elementary proba-
bility of the sample point £ when F™ is the true distribution. Let

™) = sup pE™|F®)

and
m(E™) = sup pGE™ | F®).
,(ﬂ)gn“

Then the likelihood ratio statistic of Neyman and Pearson (8] is

_ Pt
pa(t™)”

In general this expression has no meaning in the nonparametric case. Wolfowitz
[9] adapted it to the two-sample problem by considering only the sequence, B,
of the ranks of the observations. For £™ a point in the space of permutations of
B, p.(™) = 1/n!, and \ is equivalent to pa(t™). Wolfowitz was able to obtain
an approkimation to pe(¢™) and suggested its use as the test statistic. Unfortu-
nately, under these conditions the randomness hypothesis H, leads to Po(E™) =
1/n! and pe(¥™) = 1 for every £™, so that A is a constant and cannot be used.
Now suppose £™ is further restricted to the space of all possible sequences of
signs of first difference, B*. For any rank statistic, pa(¢™) = 1; thus we always
have A = p.(t™). But now p,(™) is no longer a constant, and we may take
‘the critical region

(4.1)
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(4.2) Wa(B*): pu(t™) < c.

If we give the sequence of runs up and down in order, with their lengths, we
specify the sequence B*. The next step is to give only the frequency distribution
of runs up and down. The following step is to group together all long runs and
restrict ourselves to the space of the statistics B¥*: s;, 83, - -+, $p, Spt1, b1, bsy
.-+, t,. But in the limit these have a joint multivariate normal distribution,
so in the limit A is equivalent to

’
Q(31y327'°’78m’sﬂ+17tl’t27"'7tq)7

where for any set of random variables z;, -+, z,,

v

(43) Q(xl, cty -'l?y) = ‘2':1 aij[xi - E’(x,-)][x,-‘— E'(x,)]
B )=
with
Il I =1 oo | 7
For our case we use the covariance matrix under H,, and the critical region is
(4.4) W.(B**):Q > C.

Since |t — s | £ 1, z41 need not be included in B**; if it were, || o;; || would be
singular in the limit.

Intuitive considerations similar to those that originally led Neyman and
Pearson to the likelihood ratio statistic suggest that W,(B*) is the “best” sta-
tistic depending only on the sequence B*. It would then follow that W,(B**) is
less efficient; in other words, information has been lost in ignoring the long runs
and the order of appearance of the runs. Still further information will be lost if
runs up and runs down of the same length are combined and the statistics B***:
i, -+, Tp, Tpy1 are used. While it is not practicable to use the region W,(B*),
the region W,(B**) can be used. In a previous paper (Levene and Wolfowitz,
[1]) the covariance matrix of the 7’s was given. Because of the desirability of using
the region W,(B**) the covariance matrix of the s’s and ¢’s has now been com-
puted and is given in the Appendix to this paper. Because of the weight of the
formulas and the possibilities for error in substituting numerical values of p and
g, the numerical values needed for tests based on s; on s, , sy, 4 ;and on sy, s,
83, b, I, are given, as are a few additional values. These values have been checked
by addition, using formulas of the type

(4.5) o*(r) = o’(s1 + 85+ t + ta),

where the right-hand member is to be expanded as a sum of sixteen terms. The
methods used in obtaining the covariances are similar to those used in Levene
and Wolfowitz [1]. The covariances of k, the total number of plus signs in B¥,
with s, and s’ are also given. It can be shown as follows that under H, , (s, , k) =
—0(tp, k), 0(shy k) = — o(th, k), and o(r, , k) = o(r’,, k) = 0. We have o(r, , k) =
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o(sp, k) + o(tp , k). But by symmetry, under Hy, o(t,, k) = o(s,, k'), where
k' = total number of minus signs in B*. Hence o(r,, , k) = (s, , k) + o(sp, k') =
o(sp, k+ k) = o(sp,n — 1) = 0,since n — 1 is a constant.

Although k is not independent af 7y, - - - , 7, , 7’41 under H, it is uncorrelated
with them, and since k and the »’s have a joint normal distribution in the limit,
it follows that Q(k) and Q(ry, -+, 7p, '»41) are independently distributed in
the limit as x} and x541, respectively. Thus, for example, the \ statistic depend-
ing only on k and r is

(k — E[&)" | (r — E(@)’ _
o2 (k) 2 X

This statistic is very easy to compute and use. A rough idea of the type of de-
parture from randomness may be obtained from the relative size of the two
components, since it can be shown, for example, that the test based on k is more
powerful for linear trends and less powerful for certain cyclical trends than is
the test based on r.

5. The asymptotic power function. Under H, the exact distribution of u-run
statistics is extremely cumbersome and impractical. For any alternative the
exact distribution would be still more complicated, if, indeed, it could be ob-
tained at all. Since we are thus constrained to use the asymptotic theory in any
case, we may as well take advantage of this to introduce certain simplifications.
Let F represent an infinite sequence {F™} such that, for & < m, F® (2, - -,
@) = F™ (2, ,2, ©,-+, ). If uwand » are any two u-run statistics,
then for H, or for a number of important alternatives, for example, a linear
trend, a cyclic alternative, or a stable stochastic difference equation, we have

E(u) = na, + a2,
(5.1) () = nag + aq,

o(u, v) = nas + as,

(4.6)

where the a; are constants depending on F. Let

E() = lim X E()

= 0Oy,
n—»0 n
(5.2) o*(w) = lim L *(w) = as,

o'(u,v) = lim ;e o(u, ») = as
Then for large n, E(u) ~ nE'(u), o(u) ~A/n o'(u), and o(u, ) ~ n o'(u, v),
where the symbol ~ means ‘“is asymptotically equal to.”

Furthermore, if F is such that the u-run statistics are normally distributed in
the limit (see Section 3) the limits E’(u) and o'(u, v) will usually exist; and the
asymptotic distribution of the u-run statistics is completely determined as soon



40 HOWARD LEVENE

as we have the E’(u)’s and the o’ (4, v) matrix. For the remainder of this paper we
consider only F of this type.

Now suppose we consider the hypothesis H, and a definite alternative hypothe-
sis Hy: F = F; . Then let Eo(u) and oo(u, v) be the expected values and covariances
under Hy , and E1(u) and o1(u, v) be the corresponding values under H; . We can
then compute the power of the test.

For concreteness suppose we have a linear trend:

(5.3) F® = JIF®(x; — 16).

We first consider the test based on total runs r. Then E,(r) > E;(r). Suppose we
use the lower tail of r as critical region. For size a the test will have power at

least 1 — g if

(5.4) Eo(r) — Maoo(r) = E(r) + Mou(r),
where
(5.5) \/127 fx m e dt = a
and
1 [° L
(5.6) Vo b, A=

(5.4) may be written
Eo(r) — Ea(r) > Naoo(r) + Nsou(r),
or, using the approximate values,
(6.7 VnlEy(r) — Ey(r)] > Paoo(r) + Neoi(r)]-

Since the terms in brackets depend on 6 but not on 7, the inequality will hold
for large enough 7 for any fixed § > 0, and any A, and As. In order to have a
situation of statistical interest, it is necessary to let 6 — 0 as n — « in such a
way that /n[Eo(r) — Ei(r)] remains constant. Under these conditions ao(r) —
o1(r), and consequently we may write (5.7) as

(5.8) ValBo(r) — Bi()] > (e + M)oo(r).

Thus for large n the power depends only on
Ey(r) — Ei(r)
ao(r) )
Similarly, if a two-tail test were used, we should find that the power of the test
depended only on

Alr) =

iy B = BT
69 KO ="
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We shall call A’(r), which is a monotonic function of the asymptotic power of
the test, the asymptotic power indez.

Now let 1, - -+, u, be a set of linearly independent u-run statistics with co-
variance matrix || oi; ||. Let| ¢* || = | oi; |~ Then the critical region is
(5.10) Q = 2. os'lus — Boludllus — Eo(w)] > C.
J

Again

.11 Q~n T 0| % - B || - it |-
(2

In determining the distribution of @ under H; when = is large and for the cases
of interest the matrix | (c:;)1 || can be replaced by the null covariance matrix
Il (s:)0 || . We then have @ distributed under H, as x> and under H; as a sum
of noncentral squares x, with parameter :

(5.12) nA’ = n %: (eelBo(w) — Ei(u)lBo(w) — Ei(u)l.

(See Tang [11] for the x'? distribution. Tang uses the parameters A = n A?/2
and ¢ = AV/n/(p + 1).) We will call A’ = A%(w, ---, u,) the multivariate
asymaptotic power index. It is easy to see that A’(r) defined above is a special case
of this.

The above reasoning will hold for a number of other types of alternative as
well as it does for the linear trend. We thus see that an investigation of the
asymptotic power of u-run statistics in these cases requires only the finding of
the Ei(u), and we will consider ways of doing this in the next three sections.
This situation is very fortunate for three reasons. First, it is much more labor to
find the covariances than the expected values. Second, when the Ej(u;) differ
from the Eq(u;) and the (o;)} differ from the (o:,)o , the asymptotic distribution
of Q becomes the distribution of an arbitrary quadratic form in normal variates,
and is extremely difficult to handle. Third, we can now show that @, recommended
on intuitive grounds in the last section as the likelihood ratio statistic, has opti-
mum properties. In the space of the u-run statistics (us, - - - , u,), say, we are
essentially testing the simple hypothesis that the variables (u;, --:, u,),
normally distributed with the covariance matrix | o;; ||, have means
(3, --+, u%), against the alternative that the means are (u;, ---, u),
with max | 4§ — u;| = O(n™). For this hypothesis Wald [11] has shown that
Wa(a): @ > C has optimum properties.

6. Expected values in general. So far we have only assumed that F™ was
continuous. To obtain the expected values, we assume that the probability
density function, f™(z;, - -+, 2.), exists. Then

so~E [ [

(6.1) ) ([:“’ [_/:“f"‘)(xl, ey Tn) dx‘] dx“‘) !ﬂmdx;,
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where in each term of the sum the integration is to be from — to + o for
every z; (j = 1, -+ - , n) except z; and z;, . For the remainder of this paper we
will further assume that f® = J[7$"(z:), and will omit the superscript indicating
dimensionality, writing the joint density function as

62) f@ry ey am) = iIlf.-@.-»

Equation (6.1) then becomes

(6.3) E (S) ~ z:l ‘[Q fi+2(xﬂ-2) [:H f¢+1($i+1) f ) fi(xi) dz; driyy dﬁtﬂ-z-

Zi41

Similarly we have

64) E() ~ 2 f foaCo) [ e ds dav
and
E (s,p) =
(6.5) ”Z;— [ Firpr1@iyrpi1) [:+p+lfi+r(xi+p) [ :” fin(@iyr) _/z . filx:)

X dx; s dx.-+,,+1.

For the linear trend, fi(z;) = f(z; — 46), all terms in the sum (6.3) are equal
and we have

©6) E'(s) = [: fas =30 [ flos —20) [ " iy — 6) duy dos das,

while for a cyclic alternative of period T we have

(6.7) E'(s) = 71, ;[: fi+2(xi+2) _/::H fi+l(xi+l) f°° fi(ft.') dz; driy doigs,

Ziyl

1
where E’(s) is defined by (5.2) as lim " E(s). These simplifications hold for every

u-run statistic.

We will deal only with E’(s,) and E'(t,), since s, = s, — spi1, ete. We also
note that E'(s) = E'(t) = % E'(r), since | s — ¢| < 1, and that the distribution
of t, for a sequence {X,} is the distribution of s, for {—X.}.

Even in the simplest possible case, a linear trend with 8 given, the value of
E'(s), etc., depends on the underlying distribution f(z), which must be specified
before we can integrate. We will obtain expected values for f(z) rectangular,
and for the most important case, f(x) normal.

7. Expected values for rectangular populations. Let

L, 0 <z <0+ 1,
file) = {0, elsewhere.
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Then the integrations indicated in Section 6 can be performed explicitly. The
only complication is the usual one associated with rectangular distributions: the
integral must be broken up into a number of parts, each with a different inte-
grand; and the enumeration of the possibilities rapidly becomes tedious as the
number of integrations increases. We list a number of the simpler results.

31 +06@2— 0] -1<6<L1,

(7.1) E'(k) = 0, o< —1,
1, 6>1,

12 -9 +8|0]), [0] <3

(72) E'(s) = (1 —1e)])? 1<|o| <y,
0, (o] >1,

(7.3) E'(sy) = 24(3 + 120 — 186" — 526° + 756", 0<06<}
(7.4) E'(ty) = #(3 — 120 — 66° + 766° — 816%), 0<6<3,
(7.5) E'(ry) = (1 — 46" + 46° — ¢*), 0<0< i

It will be noted that for 6 close to zero, which is the most interesting case, the
test based on s; (or ¢) is much more powerful than the test based on 3, since
the asymptotic power indexes (see 5.9) are of order §* and 6" respectively.

For one special case a simple general formula is possible, namely

e = gl G DA 0Se< o,
"(t, =J____1___ — )Pt S |
E'(ty) (p+1)!(1 )™, <0<t
0 <o

P

8. Expected value of %2 and s for normal populations. Let

(8.1) #(z) = \/lz—w et
and
(82) ®(z) = \/L% [: e at.

We will consider in this section the alternative of a normal population with
change of position, that is,
(8.3) fi(x) = ¢(wi — ni)

for some set of parameters u;(z = 1, --- , n). We can suppose without loss of
- generality that u; = 0. It will be enough to show how the first term of the sums
in (6.3) and (6.4) can be evaluated. Now.
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(84) [: é(z2 — pa) _[:2 ¢(21) doy dry

is the integral of the circular normal distribution with center at (0, u;) over the
half plane above and to the left of the line #; = x, . Evidently the distance from
(0, us) to this line is us/+/2 and the integral (8.4) is equal to ®(uz/+/2). Thus

(8.5) E(k) ~ 2®[(nir1 — 1:)/V2),
and for the linear trend, y; = (7 — 1)6, we have
(8.6) E'(k) = ®(6//2).

Here, essentially, we rotated axes so that one variate was independent of the
other and then integrated it out. This elimination of one variable can be done in
the general case of the integration in (6.5). In particular; the evaluation of E’(s)
reduces to evaluating the circular normal distribution over a region bounded by
two half lines meeting in an obtuse angle. By a further linear transformation we
obtain the relation

(87) [: o(xs — ps) ( [_ :3 ¢(xs — o) [ f, : ¢ (xy) dxl] dxz) dzs

L] L
- —02)] (34— 2
=K fa fb A= Wit g o

wherep = %, a = ps\/E — upv/%, andb = — p2V/%. The tight member of (8.7)
is given in Table VIII, Vol. 2 of Pearson’s Tables [12].

For a linear trend, u; = (¢ — 1)6, E’(s) is given by the right member of (8.7),
with a = 64/3, b = — 64/1.

Table 1 gives values of 1 — E'(k), E’(s) and '’ (k) (see Section 10) for a linear
trend with various values of 8. Pearson’s table goes only to 6+/1 = 2.6, (8 =
3.676955) ; however, it will be noted that for 8 > 2.8, E'(s) = 1 — E'(k) correct
to five decimal places, and hence we can obtain E’(s) for § > 2.8 by computing
1 — E(k). The reason for this is that as § — o« the number of minus signs be-
comes small, and nearly every run down is of length one. For other values of 6,
E’(k) can be obtained from a table of the normal integral, while E’(s) and o’ *(k)
can be obtained by interpolation in Table 1, using four-point formulas for four
decimal places or six-point formulas for full accuracy.

In Fig. 1, E’'(s) is plotted against 6, the full line for f;(x;) normal and the broken
line for fi(x;) rectangular. In order to make these comparable, the rectangular
distribution has been taken with unit variance (i.e., range = +/12). It will be
noted that the graphs are surprisingly close, suggesting that E’(s) is not very
sensitive to changes in the form of fi(x;) for fixed mean and variance.

9. Expected value of s’, for normal populations. For simplicity we will confine
our attention to a normal population with linear trend

(9.1) Jilws) = (s — pi) (us = 16).
At the end of this section we will extend the method to the general case.



TABLE 1
Limiting values for a normal population with unit variance and linear

trend R = 20

0v3 o E'(s) 1— E'® o"2(k) o' (k)
0 .000000 .333333 .50000 .08333 .289

.1 .141421 .330590 .46017 .08405 .290

.2 .282843 .322524 .42074 .08611 .293

.3 .424264 .309601 .38209 .08910 .208

4 .565685 .292542 .34458 .09244 .304

) 707107 .272240 .30854 .09554 .309

.6 .848528 .249673 .27425 .09777 .313

7 .989949 .225818 .24196 .09862 .314

.8 1.131371 .201577 .21186 .09779 .313

.9 1.272792 177722 . 18406 .09510 .308
1.0 1.414214 .154873 .15866 .09072 .301
1.1 1.555635 .133483 .13567 .08484 .291
1.2 1.697056 .113851 - .11507 07779 .279
1.3 1.838478 .096143 .09680 .07000 .265
1.4 1.979899 .080415 .08076 .06189 .249
1.5 2.121320 .066635 .06681 .05378 .232
1.6 2.262742 .054716 .05480 .04597 .214
1.7 2.404163 .044526 .04457 .03869 .197
1.8 2.545584 .035913 .03593 .03209 .179
1.9 2.687006 .028708 .02872 .02628 .162
2.0 2.828427 .022747 .02275 .02120 .146
2.1 2.969848 .017863 .01786 .01689 .130
2.2 3.111270 .013903 .01390 .01332 .115
2.3 3.252691 .010724 .01072 .01038 .102
2.4 3.394113 .008197 .00820 .00800 .089
2.5 3.535534 .006210 .00621 .00609 .079
2.6 3.676955 .004661 .00466 .00463 .068
2.7 3.818377 .00347 .00344 .059
2.8 3.959798 .00256 .00253 .050
2.9 4.101219 .00187 .00187 .043
3.0 4.242641 .00135 .00135 .037
3.2 4.525483 .00069 - .00069 .026
3.4 4.808326 .00034 .00034 .018
3.6 5.091169 .00016 .00016 .013
3.8 5.374012 .00007 .00007 .008
4.0 5.656854 .00003 .00003 .005
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We have
B () = [ dlzps — (o + Do
9.2) *
Zp42 A 23 ]
: [ ¢(&prr — PO) - -+ [_ ¢(x2 — 6) f ¢(x1) dry - -+ drpye.
E'(s)
3 \\
N
N
Q\
N\,
A\
) N
\\\\
A
A o
3 \\
S
) \“‘T?l\_
Y L 2. 3. 0

Fi1g. 1. Value of E’(s) for linear trend: X; independent with unit variances and mean 8.
Solid line denotes normal population; broken line denotes rectangular population.

This could be reduced to a p-tuple integral geometrically as was done for E’(s)
in Section 8, but it is easier to use a method due to Kendall [13]. Let

Tiyr — Xi .
(9.3) : y;=%§— (f=1---,n—1).
Then
, (r1—w2) /2 po
B =K [ [
) —13) /2

(9.4) ) po—p3 3

.. f i e"h:v’iwui dyp+l v dyl,

(hpy1—hps2) /2
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where
1 -3 0
-3+.1 =% 0
0o -3 1 -1 0
©5) 1”7 =gl = )
o -3 1 -3
0o -1 1
and for a linear trend p; — piy1 = —0 for all { < n: Kendall [13] was not in-

terested in power function considerations, but was investigating runs for a
different' purpose. He did not consider a linear trend, but the case where the X
satisfy the stochastic difference equation

(96) X,‘.}.z + aX,-+1 + bX. = U,'+2 y

where the U are independently normally distributed with zero mean and unit
variances. In his case all the u; = 0, but the matrix || ¢;; || has no zero terms.
Kendall gave 1/E'(s) for certain a and b, and suggested evaluating the general
integral (9.4) by the generalized tetrachoric series expansion given in Kendall
[14]. For a general multivariate normal distribution the evaluation of this series
is extremely laborious. For the linear trend, the many zero terms in the covari-
ance matrix reduce the number of terms in the expansion, but the labor is still
very great, and increases geometrically with p.

An alternative way of evaluating the integral in (9.4) would be by numerical
quadrature. This would involve computing and adding N terms, with N of the
order of &”*"' and a between 10 and 30 if reasonable accuracy were to be obtained.
This would be very laborious. It is much easier to work with the integral in
(9.2) and to evaluate it by repeated numerical quadrature. This will involve
only (p + 2)a operations, and is the method we will actually use.

There are many methods of numerical quadrature, from simple ones such as
the trapezoidal formula and Simpson’s formula to relatively complicated ones
involving many ordinates with different weights, and even ordinates spaced at
irrational intervals. Any of these methods will give any desired degree of accu-
racy if the function to be integrated is well behaved and ordinates are taken
sufficiently close together, but the methods differ in the number of ordinates
required for specified accuracy. In a specific situation the formula requiring the
least amount of labor should be used.

For our problem, the easiest method is the most elementary one, namely, the
tangent formula. For «, £ integers, a = 1 (2ah — 1), z = 1(2th + 1), the tan-
gent formula with remainder is
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'3 £ £ 3
(07) [0 =1 2 sm + 30 76,

where 1(27h — 1) < ¢; < £(2jh + 1) (see Steffensen [15] p. 159). Thusif f(x) exists
and is continuous on the interval*of integration, the error in using the tangent
formula is of order A’ where h is the distance between ordinates. The advantage
of the tangent formula for our purposes is that it gives the indefinite integral
with no extra labor; for example, if we start with values of f(z) at z = 0, 1, 2,
- -+, we obtain approximations to [Z; f(¢) dt at x = 3, , §, --- . These values
are then used for the second integration, and so on.

To illustrate the method used, consider the following expressions, where the
variables of summation vary in steps of h:

09 aw =h % oe-0[[ s0a|=["se-o[[ s a]s

where the symbol = means ‘“‘approximately equal to’’, and
z—h/2

Go(x) = h 2 ¢y — 20)[Gi(y)]

« [Cotw =20 ([ s -0 [ o) at]a)a

Y=—6
Then Gi(— =) = E'(k), and Gy(») = E'(}).

We will see later in Table 2 that these two formulas give values close to the
exact ones even when fairly few points are used. However, for the longer runs the
exact values are not available for comparison, so something needs to be said
about the errors in this method. We confine our remarks here to the normal case.

The first approximation made is the use of finite sums to represent infinite

integrals. We have
L 5+u
(9.10) [ ¢ —wdo— [ o - w dz = 00000
—o0 b4-n

correct to five decimals. Since all our integrands are of the form ¢(z — u)-y¥(z)
with 0 < ¢(z) < 1, the error committed by using a finite range is always less than
.00001, and the only question is whether our finite sums are sufficiently close to
the corresponding finite integrals. We will now consider this question.

There is one source of error in Gy(x), due to summing instead of integrating.
On the other hand, G(z) has two sources of error: first, we sum instead of in-
tegrating; second, the ordinates are themselves in error, because of errors in
Gi(z). It thus seems at first sight that the errors accumulate and that only a few
iterations can be performed safely. Fortunately this is not so. The author has
shown in his dissertation [16] that the error after m numerical integrations due
to the accumulated error in the ordinates used for the last summation is less
than the error due to replacing integration by summation at the last step; that
18, no great improvement in accuracy would result if the approximate ordinates

(9.9)
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used at the last step were replaced by the corresponding exact values obtained
by integration. Since this is so, it is only necessary to consider the error caused
by a single numerical integration.

Let G;(x) stand for the result of the jth summation, let g;(z) = ¢(x — j6)G;
(x), and let ¢;() be the error introduced at the jth summation. If we knew g7 (z),
we could obtain a bound on e;(z) from (9.7). Since the g7 (z) are no easier to
obtain than the expected values we are looking for, we use the approximation

(9.11) g7 (x) = %Azgj(x),

where A f(z) = f(z + h) — f(z), and Af(z) = A[A"Yf(z)]. For a general analytic
f(z), the fact that f”(x) was small on a tabulated set of points would not prevent
it from being uncomfortably large at some intermeédiate point. However, we
know that g;(x) represents a multiple normal integral and that neither the func-
tion nor its derivatives have any sudden changes. Accordingly, if A is so small
that g7 (x) changes smoothly, we can be sure that the maximum seeond difference
is close to the maximum of g7 (), and that it is safe to write

£
(9.12) o) = 2 .2."1 A% (ah).

This suggests the use of Gauss’s first summation formula (Steffensen [15], p. 104),

z £ r—1
(9.13) f f&)dt = h [; 1) + X Ko [a*hlf@)]:::;z] + 1 Ky, ﬁ‘, £,

j=a
where
oL _ 17 _ 367 K. = — 27859
LY ‘ 5760’ ® ™ 967680’ 8 464486400’ °

and 6”'f(x) is the (2v — 1)th central difference of f(z). By the same argument as
above, the remainder term can be approximated by the first correction term
omitted, provided the differences of the requisite order are changing smoothly.
For evaluating E’(sy) with 6 = 3, b = 1 is too large for smooth differences, and
successive orders of differences become large. However, with & = .2 the differ-
ences change smoothly, and successive orders of differences rapidly become
small. Consider for example G1(.5) for § = %. The uncorrected sum is .296610 and
the successive correction terms from 9.13 are —.000,233, —.000,002, —.000,000,1.
The value x = .5 was chosen because the second correction term here assumes
its extreme value. Evidently ail correction terms except the first can be ignored,
and the error of G1(.5) is only 0.19. Similarly, the maximum error of G:(z) is
0.19, at x = 2, while the error of G2(«) is only 0.03%,.

Table 2 gives values of B’ (k) and E’(s’,) for # = + and — } obtained by setting
h equal to 1, .5, and .2 and also some values obtained by using the first correc-
“tion term of (9.13). For h = .2 and 6 = % the corrected values are accurate to
five decimal places and the uncorrected values to four. Furthermore, the error
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actually decreases with repeated iteration (i.e., large p), although the percentage
error increases. The uncorrected values for b = .2 and § = —1 are probably
slightly less accurate, since the second derivatives are somewhat larger. Never-
theless, for the purpose of investigating the power functions it appears that un-
corrected summation will give ample accuracy with 2 = .2. It should be noted
that even with h = 1, where the errors in the G;(z) are large for intermediate z,
the final values are surprisingly good.

The method of repeated summation is of very general applicability. It can
be used freely when the X; are independently normally distributed with vari-
ances close to 1 and | p; — ps1| £ %. For more extreme variation it may be
necessary to use the correction term or take A < .2. It seems to be easier to take
more ordinates than to compute the differences and apply the correction term,
but the latter course should be taken occasionally to obtain an idea of the degree
of accuracy attained. The method may also be used when the X; are independent
but not normal; however, in such a case the error would have to be investigated
in the same way as we have done it here.

10. Variance. We have seen in Section 5 that it is not essential to know the
variances under the alternative hypothesis. However, if they should be desired
they can be obtained by the same methods used in Levene and Wolfowitz [1].
The only difference is that whereas under H, such probabilities as Prob {— +7*
— =} could be obtained explicitly as rational functions of p, they must now be
obtained numerically for fixed p by the methods of the three preceding sections.
In general this requires excessive additional work; however, there are two vari-
ances which can be obtained as byproducts of the expected values. These are

-(10.1) a’z(k) = 3E'(k) — 3[E'(k)]" — 2E'(s),
and
(10.2) o*(s) = 2E'(s) — 5[E'(s)]* — E'(s3) — E'(3).

Since both E’(k) and E’(s) are tabulated in Table 1, Section 8, for a normal
population with linear trend, it was possible to give o’’(k) in the same table.
The surprising fact will be noted that ¢’*(k) is a maximum at 6 = 1 rather than
at @ = 0. For 6 = 0, the signs of adjacent differences have a negative correlation,
and apparently a moderate trend tends to make the differences more nearly
independent, thus increasing the variance of the sum, k, even though the variance
ofza,n individual difference is greatest at # = 0. A similar condition holds for
' "(s).

For the special case § = , we have ¢’’(k) = .09088 and ¢'’(s) = .05610,
compared with ¢’*(k) = .08333 and ¢’*(s) = .04444 for § = 0. We can then com-
pute the exact asymptotic power of the tests. For the test of H, against the one
sided alternative 8 > 0, the asymptotically most powerful tests based on & and
s respectively are

(10.3) k\/_n/il/z > M
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and
n/3 — s
(10.4) ——m > Aa.

For the level of significance & =".05 and for power 1 — 8 = .95 we will then
require approximately n = 50 observations for the %-test and approximately
n = 517 observations for the s-test. Thus, for this alternative, the test based
on k is about ten times as good in a certain sense as the s-test.

For the sake of comparison, we find that the asymptotic power index defined
in (5.12) is A*(s) = .02362. For @ = 8 = .05 and a one-sided test we must have
n A’ = 10.822, leading to n = 459, compared to the correct value, 517. Thus we
see that even for this considerable departure from H,, the asymptotic power
index gives us a correct general idea of the power of the test.

The power of these tests will be compared with the power of tests based on
runs above and below the median in a forthcoming paper, where cyclic alterna-
tives will also be considered.

Appendix. Covariance matrix of u-run statistics under H,. When the sequence
(X1, -+, X,) is random, the expected values are
P+3p+1_p 43 —p—4

(» + 3)! (»+3)!

p+1 p+p-—1
@+2! @@G+2)!°

E(s,) = E(t,) = 3E(rp) = n

E(sy) = E(ty) = 3E() =n

and E(k) = (n — 1)/2.

The exact covariances and selected numerical values are given below. Formulas
not given below may be obtained by interchanging ¢ and s; thus ¢°(s,) = ¢°(t,)
and o(sp, &) = o(tp, s;). An exception to this rule is o(k, s,) = — o(k, t,) and
ok, ) = — ok, t3).
o(sp, 80) = n{— [1/(g + 3)i(p + 3)11 P’(¢" + 3¢ + 1) + p'a(¢" + 7q + 11)

+ p(3¢" + 11¢" + 3¢ — 10) + (¢’ — 10g — 7)]
—R/p+qg+ )0+ +9®+ 9+ 23(p + ¢ + 14]
+ [5,/(p + 3)1I0* + 3p + 11} + {[1/(g + 3)!(p + 3) 'S
+3¢ + 1)
+ p'e(q* + 7q + 11) + p*(¢* + 7" + 9¢" — 14¢ — 18)
+ p(3¢" + 11¢° - 14¢" — 65¢ — 25) + (¢* — 18¢" — 25¢ + 4)]
+ [2/(p + ¢+ 5) (P + 9)* + 10(p + ) + 29(p + ¢)* + 16(p + g)
- 19] — [‘qu/(P -+ 3)11[173 + 3p2 - p - 4]},
where 6,, = 1if p = gand = 0if p > g.



POWER OF TESTS OF RANDOMNESS 53

(sp) = n{— [1/(p + 3)'p + 3)N[2p° + 13p* + 24p° + 3p + Do — 7)]
— [2/(2p + 5)1)i8p" + 36p° + 46p + 14] + [1/(p + 3) 0" + 3p + 11}
+ {[1/(p +3)1(p+3)!1[p*(3p + 11)(p + 3 — p(28p* + 101p + 50) + 4]
+ [2/(2p + 5)![16p" + 80p° + 116p" + 32p — 19]
— [1/(p + 3)1lp* + 3p" — p — 41}.
o(sh, ) = n{— [1/(g + 2o + DIP’@ + 1) + p(¢® + 3¢+ 1)
+@+g-D—-R2/@+q¢+3)p+q+2]
+ [1/(G + DG + 11} + {[1/(g + 2}(p + 2)1]
P+ +2+3¢+1)+p+3"—g¢—4
+ @+ —49-3)]+ 2/ +q+)N+9 +3p+9 +1]
- [1/(@ + 6" + ¢ - 1]},
where G = Max (p, ¢).
a(sh) = n{— [1/(® + 2)!(» + 2)l(p + D(2p" + 3p — 1)]
— [4/@2p + 3)p + 1+ [1/(@ +2)p + 11} + {[1/ (@ + 2)!(p + 2)1]
[Bp' + 8p° + p* — 8p — 3] + [2/(2p + 3)J4p’ + 6p + 1]
— [1/(p + 21° + p» — 11}
o(sp, ) = n{— [1/(@ + 3)p + P’ + 3¢ + 1)
+ p°(¢’ + 116" + 27q + 12) + p(3¢° + 29¢" + 77 + 48)
+ (¢ + 184" + 68¢ + 59)] — [2/(p + ¢ + 3)(@ + 2l(p + 1]
p—qg— 1 —[2/(p + ¢ + 5)g + 3 + DI
+ 12/ + ¢ + Dap} + {[1/(g + 3)Up + )p'(d’ + 3¢+ 1)
+ 26" + 11¢* + 27 + 12) + p'(¢" + 11¢° + 47¢" + 84¢ + 40)
+ p(3¢* + 29¢° + 94¢ + 123¢ +45) + (¢" + 18¢" + 72¢" + 89¢ + 16)]
+R/p+q+3Ng+De+DINp+e¢+2)(p—gqg— 1]
+ 2/(p + g + 5@ + 3 + Dlip + ¢ + 4
—[2/(p + ¢ + Dalplllp + al}.
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o(sh, ) = n{— [1/(g + 2)ip + NP + ¢ + 3 + D(g + D]
+[2/(p + ¢ + Dglpl] — [1/(p + g + 3)@ + 2)!(p + 2)1]
@+ D@+ 2) + @+ D + 2}
+{[1/(q + 2 + g + 1) + p(¢" + 5¢ + 9)
+pd + 56 + 79+ 2)+ (¢ + 44" + 2¢ — 3)]
—[2/(p+ g+ Dglplllp + dl +[1/(p+ ¢ +3) (g+2)!(p+2)!]
p+qg+2) [+ D+ 2) + (g + g+ 2.

o(sp, ) = n{—[1/(p + 3¢ + DIP’@ + 1) + p'(@® + 8¢+ 9)
+ p(3¢* + 17¢ + 24) + (¢ + 8¢ + 19)] + [2/(p + ¢ + Dplg!]
+ 1/ p+qg+2)p+ g+ Dlp — g +[1/(p+ g+ 3)
P+ 2+ —q¢g+ D@+ 2D+ 1/p+qg+ 9
(@ + 3)lg + U + 2@ + 3) + (¢ + L@@ + 2)}}
+ {I/@ + 3¢ + DI + 1) + p’@ + 8¢ + 9)
+ 2’ + 8¢ + 24¢ + 29) + p(3¢’ + 17¢" + 34¢ + 43)
+ (¢ + 8¢ + 21¢ + 29)] — [2/(p + ¢ + Lplglllp +dl
- W@+ g+ 2@+ Dig+ Di* + 2p — ¢ + 2]
—[1/(p+q+3)p+2)g+ 2)l(p + 2)[(p + 2)(g + 3) — 1]
—qlg+ D@+ 2] - [1/(p+ ¢+ D + 3l + 2)1]

[(p+ ¢+ 3)p~+2)p+3) + (g+ g+ 2} .

o(sp,8) = n{—[1/(@ + 3)g + 2P°@ + 1) + p'(¢" + 5¢ + 3)

+pBe +5¢— 1D+ (@ —2— 4 — 2/ + ¢ +91]
(@ + @ + 5(p + @) + 5] + [150/( + )" + 3p + 1]}

+ {1/ + 3¢ + DIP'@ + 1) + pY¢ + 5¢ + 3)
+ ' + 56 + 2¢ — 5) + pB¢ + 5¢° — 15¢ — 16)
+ (-2 —11g— D]+ [2/+q+DNP+*+ 6@+ 9’
+ 8(p + ) — 1] — [1a(p + 3)1]lp° + 3p" — » — 41},

where 7, = 1if p > gand = 0if p < g.

a(m, sp) = n[1/2(p + D — L@ + 3p + D] + [1/2(p + 3)1
[—p' — 20"+ 5p* + Tp — 1]
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o(m, s,) = n[1/2(p + D' + 50° + p* — 14p — 4] + [1/2(p + D]
[—p° — 5p' + 3p° + 34p" + 20p — 12].
NurPerical Values
54563n — 58747

o’(s1) = %84_3"_.____1525, a’(sy) = )
20160 907200

6l = o) = 222, sp = TR0,

o*(ss) = 11—82—2—2%7_00?—@, (81, &) = -_%29&-——;0—319,

o(s1, s2) = _—5%—2—%_—4?—?, o(s1,83) = _—2—6%—@,

o(ss, s;;) _ —7092;&32(—)022016’ a(s;, d) = :_82_57(0,)2%2&’),

(s, 83) = 3on — 41 al(sy, b) = 1427n — 3333
3360 20160

o (s, 1) = 1_11&2&01_2_1’ o(ss, 8 = —345{;75&72—0015112’

olor, ) = 2 0L, olon, ) = THRELS,

oo, 1) = L2 A AT, (st 1) = 25,

o(si, ) = 20202, o(sh, ) = 20 =2,

o(sh, t) = “o T, o(sh, 1) =~ LR,

A =2E 1, oll, 5) = T,

otk 5) = 219, olk,s) = 3,

ok, s5) = 1—1—%-:)_—1, ’ ok, s3) = lg%(—;)—?é
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