SOME DISTRIBUTION-FREE TESTS FOR THE DIFFERENCE BETWEEN
TWO EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTIONS

By ‘E. F. DrioN
Statisties Department, T.N.O., The Hague

1. Summary and introduction. It sometimes happens that of two empirical
cumulative distribution curves (step curves) one lies entirely above the other,
in other words that, except at both ends, they have no point in common. The
problem then arises, what is the probability that this will happen when both
are random samples from the same population. In this paper a partial answer
will be given, based on the ingenious solution of André (as cited in the well known
textbook of Bertrand [1] in the problem of the ballot and also in Chap. VIII,
Sect. 5 of [7]). Moreover an analogous method will allow us to give an exact
answer to the problem of the maximum difference between two empirical cumu-
lative distribution functions of random samples from the same population, but
only if both samples have the same size. Smirnov has given an asymptotic solu-
tion for the latter problem (cited by Feller [3], see also [2]).

Our result leads, by using the Stirling approximation for the factorials, to the
asymptotic formula of Smirnov.

A comparison of numerical results of the exact formula and the asymptotic
formula of Smirnov shows that at least in the case of equal samples, the prob-
abilities calculated by the Smirnov formula have, for samples as small as 20,
an error of less than 49 for probabilities 0.083 or more. (See also Massey (5],
who has calculated the exact probabilities for equal samples by means of differ-
ence equations.)

2. Statement of the problem. Let a population P be given with an unknown
continuous distribution function F(x). From this population two random samples
Zy - To and yy - - Yn, are drawn. After ordering each sample from the smallest
value to the greatest we shall call them @; + -+ Z,, and 41 - - ¥n,. For each sample
the empirical distribution-function (step-function) Fy(x) or Fz(y) is constructed:

Fl(x)‘:Oa z <, Fz(:l/)=0, y < Y,

Fl(x) = =y xi§x<xi+l: FZ(y) = —y yi§y<y]'+la
ny Na

Fi@) =1, ., S Fo(y) =1, Y, S 9

As we have assumed that the population has a continuous distribution-function,
Pr(z; = y;) = 0 for all sets of values of 7 and j; that is, the discontinuities of the
two step-functions have, except for a probability zero, unequal abscissae.
. Under these assumptions we ask for:
A. The probability that either Fi(z) — Fa(z) < 0 or Fi(x) — Fy(z) > 0 for
all values of z between min (z;, 41) and max (., , ¥»,) (boundaries not included).
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B. The probability that max | Fi(z) — F(z) | = d.

We shall give a general solution of problem A both for the case that n, = n.
and that the greatest common divisor of 7, and n. equals one. For problem B a
solution has only been found for the case that n, = n, .

3. Graphical representation of two ordered samples. If we order the observa-
tions of both samples in one series according to their magnitude, so that we shall
have a series of n; + n, terms of the form z;, 22, y1, %3, Y2, +**, Yn, SAY,
then our problem A is equivalent to the following: What is the probability that,
in a random series of n; 2’s and n, ¥’s, the proportion of z’s to y’s from the first
to the n-th term of the series (where n may have all values from 2 to n; + n. —
1 included) is, for each n, always smaller than ni/n, or always larger than n,/n. .

That both problems are equivalent may be shown in this way. If the two series
of observations are random samples from the same population, they may be
considered as one sample of size n; + 72, in which n, observations are marked
z and n, are marked y. The marking of the observations does not depend (in
random samples) on the result of the observations, so all orders of the z’s and y’s
are equally probable. ‘

To solve this problem we shall make use of a graphical representation of these
series. Let the 2’s represent horizontal paces and the y’s vertical paces, then all
possible series will be represented by all possible routes joining the diagonal
corners of a rectangular lattice of sides n; and ns . Those routes which have no
common point (except the end-points), with the diagonal of our rectangle,
represent series where the proportion of z’s to y’s is either always larger than
n1/ns or always smaller.

As an illustration we shall give the step-curves and the routes in the lattice for
two series, in one of which the step-curves do not have a point in common, (and
where, therefore, the route in the lattice lies entirely at one side of the diagonal)
while in the other the step-curves intersect'. The sequence of ordered samples in
Fig. 1 is (roman type denoting z’s and italic denoting y’s) 2.0, 2.3, 2.4, 2.6, 2.7,
2.9,3.0, 8.1, 3.3, 3.4, 3.6, 3.8, 4.1. The sequence in Fig. 2 is 2.0, 2.3, 2.5, 2.6, 2.8,
2.9, 3.1, 3.2, 3.4, 3.5, 8.6, 4.3, 4.5.

The number of all possible routes from O to P is (m ;: n2> = T. We shall
now calculate the number A of all routes A from O to P lying below the diagonal
OP. The fraction A /T gives then the probability that of two empirical cumulative
distribution curves of samples from one population the second lies entirely above
the first. As each of the samples may be chosen as the first, the probability of no
intersections of the step curves will be 24/T'.

1 Tt will be clear that if the paces in both directions have unit length, the route divides
the rectangle in two parts of which the area’s are respectively U and nin: — U, where U is
the statistic defined by Mann and Whitney for the test of Wilcoxon [4].

2 We use 4 as well to indicate a route lying entirely to the right of the diagonal as to indi-
cate the number of these routes.
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The number A of routes lying below the diagonal OP depends on the number of
lattice-points on OP that is to say, on the greatest common divisor of n; and n, .
If 1 = n, = n all routes reaching the diagonal will reach it in a lattice-point,
as no route can intersect the diagopal except in a lattice-point. If n; and n, are
coprime there are no lattice-points on the diagonal (except the endpoints O
and P), while if n, and n, (n1 # n.) have a greatest common divisor d > 1, there
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are d — 1 lattice-points on the diagonal between O and P; so on n, — d points a
vertical route section and on n, — d points a horizontal route section can intersect
the diagonal outside a lattice point.

So the lattice-points available for a route under the diagonal OP is relatively
to the total number lattice-points highest if n; and n, are coprime and lowest if
ny = ny. It stands to reason that the number of routes 4 is in the first case
higher than in the second case. This we shall prove. For the intermediary case
(greatest common divisor d of n; and n, > 1) we shall prove that the number of
routes A relative to the total number of routes T is always less than when n; and
n4 are coprime. Probably this number is always higher than when n; = n, . But
we were not able to prove it.
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4. Determination of the number of routes A in the case n; = n, = n. In this
case (Fig. 3) the lattice is a square with (n 4 1)* points. We shall not determine
the number of routes A directly, but first we shall determine the number of
routes that start with a horizontal step OR (and so could belong to the class 4)
having at least one point in common with the diagonal. It will be proved that
this number equals twice the number of routes starting with a horizontal step
and ending with a horizontal step. The proof given is essentially the proof found
by André.

“©,
o

-1

/.

Fig. 3

The last step of a route “not-A4”, which starts with OR, can either be S'P
or SP. Routes ending with S’P must cross the diagonal OP and are therefore

routes ‘“not-A4’’; their number is <2n 7;- 2).

To prove that the number of routes ‘“not-A4” ending in SP equals the number
of routes ending in S’P we shall show that there exists a one-one correspondence
between the routes “not-4” ending in SP and the routes ending in S’P. A route
“not-4”’ like ORQSP can be transformed in a route ending in S’P by rotating
the part QSP about OP to QS’P. Here the point @ is the last point on the route
before P that lies on the diagonal OP; each route “not-A” ending in SP can there-
fore be transformed in one way only in a route ending in $’P. On the other hand
each route beginning with OR and ending with S’P will cross at least once the
diagonal OP. By rotating about the diagonal OP that part of the route, which
lies between P and the point @ where it reaches for the first time OP, it will be
transformed in a route “not-4” ending in SP. This route “not-4” ending in SP
is also uniquely determined by the route ending in S’P. So we have proved the
one-one correspondence between the routes “not-A’’ ending in SP and the routes
“not-A” ending in S’P. The total number of routes “not-4” starting with OR

is therefore 2 <2n ; 2).
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The total number of routes starting with OR is (Zn n_ 1) therefore the num-

of routes 4 is
<2n - 1) <2n - 2> <2h -1 )<2n - 2) 1 <2n - 2)
-2 = -2 = .
n n n—1 n n—1 n
The total number T of routes from O to P is <2:) So the probability that

a route chosen at random lies either entirely to the right or entirely to the left
of the diagonal equals

1 2n — 2 2 2n — 2
2Xn—1< n )= n-—l( n ) — 1
2n> 2n 2n — 1 2n—-2) 2n— 1"
n n n-—1 n

The probability that the cumulative frequency curves from two random
samples n of the same population have no points in common (except the end-
points) is therefore (1/2n — 1).

6. Determination of the number of routes A in the case n, and n. coprime.
In this case (Fig. 4) there are no lattice-points on the diagonal except the end-
points, and if through any lattice-point (except the endpoints) a line parallel
to the diagonal is drawn no other lattice-point will lie on this line; for if there
were two lattice-points 1y, and s on this line, then the triangle with angles
(x1y1), (x2y2) and (ze1) would be similar to the triangle (0, 0); (n; ,ns) and (n; , 0);
s0 (ya — y1)/(@2 — x1) = me/ny, where (y2 — y1) and (x; — z;) are integers
smaller than n, respectively n, . But this is impossible, as n; and n, are coprime.

A route A4 like OQP passes through n; + n. — 1 lattice-points (O and P ex-
cluded). If this route is cut in any of those lattice-points (like @) and the two
parts are interchanged the new route will not be a route 4, that is to say it will
not lie entirely to the right of the diagonal OP. For the angle PQC’ is greater than
the angle POC, so that if @ is placed in O then P will lie in a point @’ to the left
of OP. Furthermore a straight line through Q" parallel to OP will not intersect
anywhere the polygon OQ’P; the part O’ is not intersected because OP does not
intersect the part QP of the original line and @’P is not intersected because OP
does not intersect 0OQ (for OQP is a route A that is, by definition a route, not
intersected by OP). If we cut the route OQ'P in @', (which point is uniquely
determined as being the first point lying on a line parallel to OP moved from D
to P) and interchange the two parts OQ’ and Q'P, the original route OQP will be
reconstructed. On each route OQ'P which passes through at least one lattice-
point @’ at the left-hand side of OP and only on these routes, one, and only
one, point Q' can be found, therefore a route OQ’'P (not-4) gives after trans-
formation only one route OQP(A4). On the other hand, two different cuts of a
route A will give after transformation two different routes, because if the co-
ordinates of the section-points be (x1, y1) respectively (zz, y2), the coordinates
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of the images @’ respectively Qs of O and P will be (ny — 1, n2 — 1) Tespectively
(1 — x5, ny — ys), which points are different. As each route “not-4”’ has only
one point @', two routes with different points Q' are different. It is also impossible
that two different routes “A” give after section the same route “not-A4”, because
the transformation of a route “not-4” to a route “4” is unique. As all routes lie
either entirely to the right of OP (are routes “4”) or have at least one point to
the right of OP, and as each route 4 gives by the (n; + ny — 1) possible cuts
(n1 4 ny — 1) different routes “not-A”, the total number 7' of routes from O to
Pequals A + (n1 + ny — 1)A = (n; + ny)A. Therefore the probability that a
randomly chosen route is a route A equals 1/(n, + n). The probability that two
empirical cumulative distribution-curves, from two samples of size n, and n,
(m and m, coprime) from the same population do not intersect, is therefore

2/(121 + n2). :
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o
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6. Determination of the number of routes 4 in the case n, and n, have a
common divisor greater than 1. If n; and n, (n; 5 n,) have a greatest common
divisor d > 1, there are d — 1 lattice-points on the diagonal (except the end-
points). In this case the routes “not-4”’ can be divided into two groups: “not-4,”,
routes which pass through at least one lattice-point at the lefthandside of the
diagonal, and “not-4,”, routes which pass through one or more lattice-points
on the diagonal but do not pass through a lattice-point at the lefthandside of
the diagonal. A cut followed by an interchange of the two halves of a route
“A” will transform it into a route “not-4,”. A cut followed by an interchange of
the two halves of a route “not-4,” will transform it either into a route “not-4,”,
or into another or the same route ‘“not-A,” (if the cut falls on the diagonal).
So the total number of routes is (n;,+ n, — 1) A + 4 4+ routes “not-A,”’ + routes
“not-4,”, resulting from cuts in routes “not-4,”, = (n, + ns) A + z. The num-
ber of routes A is therefore less than the 1/(n; + ny)th part of all the routes.

It may seem rather strange that the probability in the case n; , n, coprime is
about twice the probability in the case n; = n, . This discontinuity is of course
caused by the fact that in the case n; = n, both distribution-curves may have one
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or more points in common (except the endpoints) without crossing each other
(in other words the graph may meet the diagonal without crossing it). In the
case that n; and n, are coprime this is impossible.

If in the case n; = n. we seek,the probability that either Fi(x) — Fi(x) <
0 or Fy(x) — Fo(x) = O (instead of Fi(x) — Fa(x) < 0 or Fi(x) — Fa(x) > 0) it
will be found (by applying formula (1) of the next section with & = 1) that this
probability is 2/(n + 1). Therefore under these conditions the probability for
ny = n, is about twice as large as for n; coprime to n; .

In consequence no direct statistical test can be based on these results, as one
of the referees remarked. However should one in an investigation find that of
two empirical distribution-curves, one lies entirely above the other, the formulas
given above enable one to calculate the probability that such a result is caused
by random sampling fluctuations. .

D F P

o ) [
Fi1a. 5

7. Probability that the maximum difference of two empirical distribution
curves from two samples of size n from one population is at least A/n. To solve
this problem (exact solution of the problem of Smirnov in the case of equal
samples) we shall again use the representation of our two samples by the lattice
OCPD (Fig. 5). As ny = np = n, this lattice is a square. All routes from O to P
that reach a point on one of the lines EF, GH or on both lines, or that intersect
one or both of these lines represent pairs of samples, where for some value x
the maximum difference | Fi(x) — Fa(z) | is at least OE/PC = OE/n.

To solve this problem we need the following lemma.

LeEMMA. ‘The number of routes in a rectangular lattice with sides ny and ns,
such that somewhere the number of vertical paces y exceeds the number of horizontal

. [+ ne
paces x by at least h s (nl T+ h
in Whitworth Proposition XXIX [8]. We shall give here a geometrical solution
that can be extended to the problem of Smirnov.)
Proor. All routes, such that somewhere the number of vertical paces exceeds
“the number of horizontal paces by at least h, are routes that reach or intersect a
line EF, which makes an angle of 45° with DO (fig. 6).

). (An algebraic solution of this problem is given
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We shall cut a route, such as OGP’ that somewhere reaches the line EF, in
the point G where it reaches this line for the first time. The part OG is reflected
about EF to O'G; the part GP’ is left in its place.

A route from O to P’, reaching orintersecting EF, may thus be transformed in
one way in a route from 0’ to P’. As we may transform the route O’P’ back to
the route OGP’ by cutting it in the first place where it reaches EF, and reflecting
0'G about EF, we see that there is a one to one correspondence between the
routes from O to P’ reaching or intersecting EF and the routes (O'GP’) from 0’
to P’. If the sides of the lattice measure n; (= 0C’) and n, (=C'P’) and if OF

D v p’

F1a. 6

= O'E measures £, then the number of routes from O’ to P and therefore the
number of routes from O to P reaching or intersecting the line EF is
W <nl+h+m—h)=<nl+nz>

n 4+ h n -+ h

7.1. Classification of routes OP representing empirical distributions where max
| Fi(x) — Fa(x) | 2h/n. The solution of the problem of Smirnov is, even in the
case of equal samples, rather complicated, while the empirical distribution
curves Fi(x) and Fu(xr) may intersect more than once. Therefore it is possible
that there are one or more values of x such that Fi(x) — Fa(x) = h/n, and in the
same pair of samples other values of z, such that Fi(x) — Fi(z) < h/n. In other
words, the route may intersect or touch both lines ¢ = EF and b = GH. We may
classify the routes which touch or cross either one or both of the lines @ and b
in the following way (Fig. 5):

A. routes touching or crossing only a,

B. routes touching or crossing only b,

C. routes touching or crossing first one or more times a and afterwards touch-
ing or crossing b (after having touched or crossed b, these routes may also touch
or cross @ again).

D. routes touching or crossing first one or more times b and afterwards touch-
ing or crossing a (after having touched or crossed a, these routes may also touch
or cross b again). The letters A, B, C and D will also be used for the number of

‘routes of these categories. In the same way we will use the letters a and b also
for the number of all routes that cross a respectively b, whether they cross b
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(respectively a) or not. By reasons of symmetry it is clear that ¢ = b, 4 = B
and ¢ = D. Furthermorea = 4 4+ C + D,b = B 4+ C + D. The total num-
ber of routes touching or crossing either @ or b or bothis 4 + B +C 4+ D = a
+ b — (C + D) = 2(a — D).

The number of routes a is given by our lemma viz. (n 2_n h) , 80 we have only

«

to find the number of routes D.
7.2. Calculation of the number of routes D. The number of routes D may be
ound by a repeated application of the device used for calculating a (Fig. 7).

K (<) K P
H ;
N
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We rotate the rectangle OEKC about HK, leaving that part of the route from
O to P unchanged which begins at the point where this route touches or crosses
for the first time HK. After the transformation the routes D are the routes from
0’ to P which touch or cross F'G’, without having first crossed the line HK. The
lengths of the sides of the rectangle O’P (indicating this rectangle by the ends
of one of the diagonals) are n — h and n + h. To determine the total number
of routes touching or crossing F’G’, we rotate the rectangle 0’G’ about F'G’,
leaving unchanged that part of the route from O’ to P which begins at the point
where this route touches or crosses for the first time F’G’. The new rectangle will
have sides n — 2h and n + 2h. The total number of routes in the rectangle

. 2n
O"P is (n — o,
tangle O’P which touch or cross the line F'G’. To get the number of routes D

>, this is therefore the total number of the routes in the rec-

we must subtract from this number (n in%) the number of routes in O”P

touching or crossing the image H’K’ of HK in O”'P, without having touched or
crossed F'G'. By rotating the rectangle 0”’K’ about H'K’, we get a new rectangle
with sides n — 3h and n 4 3h. The total number of routes in this rectangle is

n — 3h

( 2n > ; the sought number of routes to subtract from (n .2_n2h> among these
are the routes which do not touch or cross the image of F’G’, which can be



572 E. F. DRION

determined by repeating the process of rotating. The law for the determination

of the number of routes will be clear. Their number is: 2n - 2n +
n — 2h n — 3h

(n in 4h> — - -+, the series beirtg continued as long asn — kh = 0.
The total number of routes which cross either one or both lines HK and FG is-

therefore
2n 2n 2n
2[(73 - h) - (n — 2h>+<n - 3h> :l

As all the routes from O to P number (2;:) the probability that a random

chosen route touches or crosses HK or FIG or both is

2n 2n
2[<n — 1) (n - 2h>+ ]
2n )
n
This is therefore also the probability that the maximum difference of the cumu-

lative frequency-curves of two random samples from the same population is at
least h/n.

TABLE 1
P
n d h =nd
Exact Smirnov

20 .25 5 .5713 .5596
20 .40 8 .0811 .0815
20 .45 9 .0335 .0349
20 .50 10 .0123 .0135
50 .16 8 .5487 .5441
50 .24 12 L1124 .1123
50 .28 14 .0392 .0396
50 .32 16 L0115 .0120
100 .12 12 .4695 .4676
100 17 17 L1112 L1112
100 .19 19 .0539 .0541
100 .23 23 .0099 .0101

~ 8. Some numerical results. We have calculated the probability P that
max | Fi(x) — Fo(z) | = d for samples of size n = 20, 50, 100 and for values
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of d such that P ~ 0.50, 0.10, 0.05 and 0.01 by means of the exact formula and
by the asymptotic formula of Smirnov. The results are given in table I.

The figures, given in the last column, were found by linear interpolation in the
table of Smirnov [6]. .

With equal-sized samples the asymptotic formula of Smirnov gives very satis-
factory results even for samples of 20. We suspect, however, that when the
samples are of unequal size the agreement will be less satisfactory especially if
n; and n, are coprime, because in this case there is only one lattice point on HK
and FG, which must in this case be parallel to the diagonal OP (c.f. Fig. 7).

9. Concluding remarks. (a) The probabilities given above are based on the
assumption that the distribution-functions of the population are continuous. In
practice almost all distribution-functions, however, are discontinuous, owing to
the limited accuracy of our measurements. In other words, in practice we work
always with grouped data, although the classes may be so small, that in no class
falls more than one observation and often none. Nevertheless, when the number
of observations is large enough, more than one observation will be found in
several classes. /

Let the width of the classes be A, so that the values of F(z) (i.e. the cumulative
experimental distribution-function) are only known for x = hg (with g an integer
between g, = [2:/h) and g» = [2./h] + 1, where [x/h] denotes the integer part of
x/h). If of two ungrouped samples, &1, - -+, Zn, and y1, * + -+, Yn,, the cumulative
experimental distribution curve of the y’s lies entirely to the righthand side of
that of the a’s, i.e. if Fi(x) > Fo(z), a1 = min (21, y1) £ ¢ < max (Tn,, Yn,) =

a. then, after grouping,
in(|® b < g
mm<|:h]+ l,l:h:l + 1) =g

soer (5 [5]) = o

But the converse needs not hold. Therefore the probability that Fi(kg:) >
F(hg;) for all values of g; between g, and g. (¢ and g, included) is greater than
or equal to the probability that F; (z) > F; (z) for all values of z between a; and
as (a; and @ included).

If however. Fi(hg:) > Fa(hgit1), g1 = 9i < gn — 1, then Fi(z) > Fa(z), a1 =
z £ a,, although the converse needs not hold. Therefore the probability that’
Fi(hg:) > Fy(hgis) for all values of g; between g, and g, — 1isless than or equal
to the probability that Fi(z) > Fa(z) for all values of z between a; and a,
(a1 and a; included).

From this last result the following conclusion may be drawn: the probability
that in two grouped random samples from the same population the cumulative
experimental frequencies of one of the samples is higher at all class boundaries
(which are the only values of the variate for which the cumulative frequency is

Fl(hgz) > F2(hgi)) [
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known) than the cumulative frequencies of the other sample at the class bound-
aries of the next higher class is less than or equal to the formulae given in Sec-
tions 4 and 5.

(b) The formula given in Section 7 for the Smirnov test applies to the two-
sided test. In the case we are only interested in deviations in one direction the
formula is much simpler. With equal-sized samples from the same population

the probability that Fi(zx) — Fay(x) > d/n is <n 217' d> / (2:)
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