IMPARTIAL DECISION RULES AND SUFFICIENT STATISTICS!

By Ragau Ras Bauapur anDp Leo A. GooDMAN
The University of Chicago

Summary. A class of decision problems concerning & populations was considered
in [1] and it was shown that a particular decision rule is the uniformly best
‘impartial’ decision rule for many problems of this class. The present paper
provides certain improvements of this result. The authors define impartiality
in terms of permutations of the k& samples rather than in terms of the & ordered
values of an arbitrarily chosen real-valued statistic as in the earlier paper.
They point out that (under conditions which are satisfied in the standard cases
of k& independent samples of equal size) if the same function is a sufficient sta-
tistic for each of the & samples then the conditional expectation of an impartial
decision rule given the k sufficient statistics is also an impartial decision rule. A
characterization of impartial decision rules is given which relates the present
definition of impartiality with the one adopted in [1]. These results, together
with Theorem 1 of [1], yield the desired improvements. The argument indicated
here is illustrated by application to a spécial case.

1. Introduction. Let oy, ma, + -+, m be a given set of populations and let the
distribution function of a single observation z; from =; be

1) Pr(z; = 2) = G(z, 6:) (— <2z < )

where 6; is an unknown parameter (not necessarily real-valued),z = 1,2, --- , k.
Write w = (61, 62, -+ -, 0;) and let Q be the set of all points w which are re-
garded as being possible in the given case. Suppose that n independent observa-
tions are drawn from =, , giving the sample (z;1, s, -+, Twm) = u; say, © =
1,2, ---, k, and let the combined sample point (u;, s, ---, u) be denoted
by v. Let d(v) = (p1(v), p2(@), -+, px(v)) be an ordered set of functions p; of
the combined sample point » such that

2) 0=pw =21, Z}pi(v) =1

for all ». Then d(v) is said to be a decision rule. The statistical problems which
motivate this definition may be described as follows.

Suppose that it is desired to determine appropriate sampling rates p;, p2,
«++, pg for m, m, -+, m, respectively, p; being the relative proportion of
2’s which will be drawn in future from =;, (0 < p; = 1, Z’ip, = 1). For example,
the given populations may be & varieties of grain, z; the yield (bushels per acre
or dollars profit per acre) from m;, and p; the proportion of the available land

on which =; is to be grown, ¢ = 1, 2, --- | k. Again, m, 2, - -+, m may be
1 This paper was prepared in connection with research sponsored by the Office of Naval
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sources of a manufactured article, x; the relevant quality characteristic (e.g.,
number of hours of service) of an article supplied by =;, and p1, P2, -, Dx
the relative proportions in which a consumer obtains the articles he needs
from 7, w2, + -+, m, respectively. The mixed population obtained by using a
given set &’ = (p}, p2, -+ -, pr) of sampling rates is characterized by the dis-
tribution function

®)  Glled) = 3066, 0) (—o0 <2 < ),

where the component distribution functions G(z, 6;) are given by (1), and the
object is to determine d° in such a way that G(2 | », d°) has properties which are
desirable in the given case. (For instance, it may be desirable to minimize
G(a|w, d°), where a is a given constant, or to maximize G(b + ¢|w, d) —
G — €| w, d") where b and ¢ > 0 are given constants.) If the parameters 6;
were known, an appropriate d° could (presumably) be determined, but otherwise
the statistician must resort to sampling the populations and take d° to be a
function of the sample values. If samples of fixed size n are drawn from each
population, we see that the statistician will be using a decision rule, say d(v) =
(p1(v), p2(v), - -+ , Pu(v)). The expected distribution function of the mixed popula-
tion obtained by using the rule d(v) is (cf. (3))

H(z|w,d) = E[G(z | w, d®)) | »]

4 &
@ = ;G(Z, 6:)Elp;(v) | w] (= <2< ),

where E[p:(v) | ] denotes the expected value of p;(v) when the true parameter
point is w. The statistician’s problem is to construct a decision rule d*(v) such that
H(z | », d*) has properties which are desirable in the given case.

A special version of applications of this type is the following. For brevity,
write Gi(z) = G(z, 6;) and let A\(G@) be a real-valued functional on the distribution

functions G(z), for example, A(G) = f 2dG() or NM(@G) = G(b + ¢ — G(b—

¢), where b and ¢ > 0 are given constants. Writing \; = N(G:), suppose that it
is desired to select a population, =, say, from the given set m1, 72, - -+, m such
that \, = max{N\;, Nz, - -+, M} Since the G’s are unknown, it will in general be
impossible to effect a (or the) correct selection with certainty, but if it is agreed
to make the selection depend on the outcome of drawing samples of size n from
each population, the most general selection procedure is to use a decision rule,
d@) = (p@), pv), -+, pr(v)) say, in the following manner: given v, the
statistician performs a random experiment whose outcome p takes on only the
values 1, 2, --- , k with

Pr(p = 1) = piv) (@E=1,2—---,k)
and selects 7, . The probabilities of selecting m;, 72, -+, m are then
(5) Elpi(v) | @], Elpa(v) | @), - -+, Elpa(v) | ],
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respectively. The problem in such a case might be to construct a decision rule
d*(v) such that the probability of a correct selection in using d*(v) is “as large
as possible.”

In view of the applications (¢f. (4), (5)) we shall say that two decision
rules d(v) = (p©), -+, px(v)) and d’(v) = (pi@), -~ -, pr(v)) are equivalent if
Elp:() | w] = E[p;®) |w] fori = 1,2, .-+, k and all » in Q.

We shall concern ourselves primarily with a class of decision rules which seems
to be of interest on intuitive grounds. This is the class of impartial decision
rules (see [1], [2]). Let us consider the case k = 2. Then a decision rule d(v) is
said to be impartial if d(u,, us) = (a, B) implies d(uz, w) = (B, @). In other
words, dw) = (pi(v), p2(v)) is an impartial decision rule if pi(uz, wi) =
po(u1 , z), P2(Uz , 1) = P1(ur, us) for allv = (w1, up). In the general case, a
decision rule d(v) = (p1(®), p2(v), - -+ , Pe(v)) is said to be ¢mpartial if for any
v = (U1, U, - -+ , u) and any permutation 4 45 --- 4 of 1 2 3 --- k& we have
i (uiu Uigy =", uik) = Di; (ul, Uzy =ty uk) fOI'j =12--, k.

The main result of this paper (Theorem 2) applies to cases whose essential
feature is the existence of a function s(u), not necessarily real-valued, on n
dimensional sample space such that s; = s(u;) is a sufficient statistic for 6;
(¢ =1,2, ---, k), and such that the conditional distribution of u; with s; fixed
equal to ¢ is the same for each 7. (The necessary conditions are always satisfied
if, for example, the k& populations are all (i) normal, or (ii) rectangular, or (iii)
exponential, or (iv) binomial, or (v) of Poisson type.) Then t(v) = (s1,82, - -, 8)
is a sufficient statistic for w, and it is clear, upon taking conditional expecta-
tions, that corresponding to any decision rule d(v) there exists a decision rule
d*(t(v)) which is equivalent to d(v) (Theorem 1). It is not immediately obvious,
however, that if d(v) is an impartial decision rule then this equivalent rule d*(¢(v))
will also be impartial. We show, in proving Theorem 2, that this is indeed the
case. The question raised on page 374 of [1] with reference to Example 2 of that
paper is thus answered in the affirmative. Our final result (Theorem 3) gives a
characterization of impartial decision rules which relates the present definition
to the one adopted in [1]. It might be pointed out that impartiality is a special
case of invariance (cf. [6]), so that this is a special case of the following proposi-
tion: the conditional expectation of an invariant decision rule is also an invariant
decision rule. A discussion of the general proposition will appear elsewhere.

Now, it is known (Theorem 1 of [1]) that there exist two impartial decision
rules, called df (¢(v)) and dj (¢(v)), such that in many applications dy (¢(v)) is the
worst one and dj ({(v)) the best one in the class of all impartial decision rules of
the form d*(¢(v)) whatever the unknown parameter point « may be; that is,
di(¢(v)) and di (t(v)) are the uniformly worst and uniformly best decision rules
in the class of all impartial decision rules which are based on the sufficient
statistics s, sz, -+, s alone. Theorem 2 shows that in these applications
di(t(v)) and di (¢(v)) are in fact uniformly worst and uniformly best in the class
of all impartial decision rules. (Theorem 1 of [1] is stated and proved only in
the “continuous” case, but can be extended to cover the discrete case as well;
the necessary modifications become evident upon comparing Theorem 3 of
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the present paper with the development in [1].) By way of illustration of the
argument indicated here, in the final section of the paper we consider certain
problems connected with the case when 7y , w2, -+ - , m are normal populations
having unknown means m; and a common variance ¢° (which may or may not
be known) and prove a result (’I‘heorem 4) which generalizes Example 1 of
[1] as also a result due to Simon [2] for the case k = 2.

2. Theorems. The reader is referred to [3] for an account of such measure-
theoretic terms and results as we use without explanation in what follows.
Throughout this section we write ‘(sub)set’ for ‘Borel-measurable (sub)set’
and ‘function’ for ‘Borel-measurable function.” Functions whose range is not
specified are understood to be real-valued. R’ denotes a fized subset of the set
of all points 2 = (x1, 22, - -+ , Z,) With real coordinates «; . (In our discussion,
some of the spaces R? will be given at the outset, and all the others will be de-
fined explicitly in terms of them.) For any subset 4 of R’ x.(2) denotes the
characteristic function of 4 ; that is, x4(2) = 1forzin A and = 0 for z in R* — A.
Let f be a nonnegative function on R? and let N be a measure on R? (more pre-
cisely, a measure on the subsets of R) such that

fmf(z) ax = 1.

Let Z be a random variable taking values in R? such that the probability of
event {Z ¢ A} is

[ 1 an

A4

for all sets A. We then say that Z is distributed (on R?) according to f(z) d\.
Let Uy, U,, ---, and U be independent random variables whose joint

distribution is governed by a parameter w taking values in a space Q. Each U;
takes values in a set R" of points u. Let s be a function on R" onto a set R™
of points y. Let k() be a nonnegative function of u, and let u be a o-finite measure
on R". Corresponding to each win @ and each ¢ = 1,2, --- , klet gi(y:w) be a
nonnegative function of y such that

fR h()gils(u): @) d = 1.
Itisassumed that U; isdistributed according to A(u)gi(s(w):w) du (¢ = 1,2, - - k).
Let R™ (= R* X R™ X -+ X R™) be the set of all pointsv = (u1 , Uz, * -+ ,us)
with u;in R* (+ = 1, 2, - -+, k), and write
k
a@) = H1 h(us),
tw) = (s(w), sua), - -, s(w)),

B(t@): w) = 1I“I1 :(s(u) : w).
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Let u™® be the product measure p X u X -+ X u on R*. Then V = (U, Us,
-+« , Uy) is distributed according to a(v) B((v):w) du® If ¢ is a function on
R™, we shaH denote the expected value (if it exists) of ¢(V), that is, the integral

-/:znk ¢(v)a(v)ﬂ(t(v) :O)) d,u(k)y

by Elg(@) | «].

Let R™ (= R™ X R™ X --- X R™) be the set of all values of ¢ as v ranges
over R™, and let the generic point of R™ be denoted by w or by (y1 , %2, -+ - , Yi)-
It can be shown that the preceding assumptions and definitions imply that ¢
is a sufficient statistic for » when the sample space is R™; that is, corresponding
to each subset A of R™ there exists a function ¢4 , 0 < ¢4 < 1, on R™ such that

Elxs(t®)) xa(®) | 0] = Elxs(t@) $4()) | v]

for all subsets B of R™ and all w in Q. (¢.(w) is called the conditional probability
of the event {V ¢ A} given {(V) = w and any w in ). This property of ¢ does
not, however, suffice for our purpose; we require in addition the following re-
sult concerning the structure of the functions ¢4(w).

Lemma. Corresponding to each y in R™ there exists a probability measure N, on
R" such that for each A and w we may take ¢pa(w) = v,(A), where, for fixed w =
(W1, Y2, * 5 Yk) s v 18 the product measure Ay, X Ay, X +++ X Ay, 0On R™.

A proof of the lemma can be constructed along the following lines. (i) There
exist functions ¢;(s:w) and a fixed probability measure u* on B* such that U; is
distributed according to ¢;(s(u):w) du* (¢ = 1,2, --- , k; w £ Q). (ii) There exist
functions A\, (C) such that, for each y, \, is a probability measure on. R", and
for each subset C of R", \,(C) is the conditional measure of C given s(u) = y
when u* is the unconditional measure on RB" (cf. Exercise (5) on page 210 of [3]).
(iii) Foreachz = 1,2, --- | k and any set C, \,(C) is the conditional probability
of the event {U; ¢ C'} given s(U;) = y and any w in Q. Finally, (iv) ‘“the con-
ditional joint distribution of Uy, Uz, --- , and Uy given s(U;) = y;, % = 1, 2,
-+, k, and w is the product of the individual conditional distributions under
the corresponding individual conditions”, and the lemma follows. We omit the
detailed verifications.

The reader should satisfy himself that (with a suitable definition of the suffi-
cient statistic.Z in each case) the lemma applies to all standard cases of &£ inde-
pendent samples of equal size. It is therefore likely to prove useful also in con-
texts other than the present one.

Now let d(») = (pi(n), p:(®), -+ -, pi(v)) be a decision rule. Write

piw) = fR _ 0i0) dvs.

Since », is a probability measure, it is clear from (2) that 0 < pF(w) = 1, D5,
pi(w) = 1, so that d*(t(®)) = (pf(®)), ps(t®)), --- , pi(t@)) is a decision
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rule. It follows from Exercise (6) on page 211 of [3] that p}(w) is the conditional
expectation of p.(V) given {(V) = w and any w in Q; that is,

Elxs(t@))pi(v) | o] = Elxa(é()) pI() | vl

for all subsets B of R™ and all win @ (¢ = 1,2, -+ - , k). Taking B = R™ we
see that d*({(v)) is equivalent to d(v). Thus we have

THEOREM 1. Corresponding to any decision rule d(v) there exists an equivalent
dectsion rule d*({(v)).

Suppose now that d(v) is an impartial decision rule. It is easy to see that in
that case d*(#(v)) must also be impartial. Consider the case ¥ = 2. Then for
any point (y; , ¥2) of R™ we have

P9 = [ i) drn 0 ®)

- { [ i, dxm(ul)} )

- Rn {L» Pl ’ w) d)‘”l(ul)} Ay, (us)

= j‘; i { /‘; i 1 (g, ug) d)\,,,(uz)} ANy, (uy)

= fm Pi©) v, w0 @) = D s, %)

and the impartiality of d*(¢(v)) is proved. A parallel argument applies to the
general case. Hence

THEOREM 2. Corresponding to any impartial decision rule d(v) there exists an
equivalent impartial decision rule d*(t(v)).

We remind the reader that the d*(¢(v)) which we have constructed in terms
of the given d(v) is equivalent to d(») in virtue of the fact that d*(¢(v)) is the
conditional expectation of d(V) given ¢(V) = ¢(v) and any w in ©2. In many sta-
tistical applications, the loss incurred in adopting a particular decision d* =
(p1, p3, -+ , pr) When w is the parameter point is of the form

k
o, d) = ;fa(w)p?', filw) 2 0.

For each w let ¢(w, z) be a bounded convex function of z defined for min; {fi(w)} =<
z < max; {fi(w)} and write y(w, d*) = ¢(w, I(w, d*)). Then y is a convex function
of d* for each fixed w. It follows from Lemma, 3.1 of [4] that, irrespective of the
particular weights f;(w) and particular function ¢(w, z), we have

ElY(w, a*(t@))) | «] = El¥(w, d()) | «] for all w.

"Our immediate purpose in stating this consequence of the relation between
d(v) and d*(¢(v)) will be served by noting the following easy corollaries of the
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general result: (i) The expected loss when using d*(t(v)) always equals the ex-
pected loss when using d(v), and (ii) the variance of the loss when using d*(¢(v))
never exceeds the variance when using d(v). Now, the equivalence of d*(¢(v)) and
d(v) also implies (i), but results such as (ii) do not follow from equivalence
alone. There is, therefore, a somewhat stronger justification than the one given
by Theorems 1 and 2 for using decision rules which depend on the outcome v
only through ¢.

We shall now give a useful representation of impartial decision rules. Let
¢(u) be a real valued function on R" and for any v = (w1, ug, *+-, ) set
¢ = ¢(w;),r = 1,2, -+, k. Let D(¢p) be the class of all impartial decision rules
which are based on ¢, , ¢, - - - , ¢ alone, that is, all impartial decision rules of
the form d(v) = (pi(¢n s 2,y Br), Do, s Be)y oo, Deldr, cc o, Ba)).
Since ¢(u) is a given function, D(¢) will, in general, be a subclass of the class of
all impartial decision rules, but may coincide with it. In any case, for given v,

let ¢y , @ , - * , ¢ be the k (not necessarily distinet) numbers ¢; arranged
in ascending order of magnitude and write
1 if¢i = ¢,
Qi; =
0 otherwise i=12 - ,k).
THEOREM 3. A decision rule d(v) = (p1(v), p2(v), --- , px(v)) is a member of

D(p) of and only if there exist functions Nj(z1, 22, -+, 2),J = 1,2, .-+, k,
such that

and such that for each v = 1,2, -+« , k

k
Qi
pilv) = E — Nildw, @, 0, b))
=3 ay

ju=al

Sor all v.
The proof is by direct verification and is omitted.

3. An application. Let 71, w2, -+, m be normal populations, m; having an
unknown mean m; and variance o°. Write 8; = (m;, ¢),w = (81,02, -+ , 6x),
and let Q@ be the set of all points w which are regarded as being possible in
the given case. Let g.(w), 2 = 1, 2, --- , k, be functions defined on @ such that
m; £ m; implies ¢; < ¢;, ¢, j = 1,2, --- , k. Suppose that samples u; =
(i1, iz, ++- , T:a) of n independent observations are drawn from each of the
populations m, , giving the combined sample point » = (u;, w2, ---, ).
For any decision rule d(») = (pi(v), p2(v), - -+, p(v)) and any w in Q let the
expected loss, or risk, by given by

(6) r@d| o) = max {g:(@)} — 2 9:()-Elp:0) | o]
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Regarded as a function of w, r(d | w) is called the risk function of d(v). The problem
is to construct (if possible) an impartial decision rule d*(v) such that r(d* | )
is as small as possible no matter what » may be. We shall show that the problem
has a solution which is independent of the functions g; . We shall also describe
two determinations of the functions g; which seem to be of special interest.

For any v, set ; = n“l Z;';l X, 7:'= 1, 2, LRI k, and Ty = min {fi}, Ty =
max {Z;}, and let a(v) = number of ;s which equal ¢ , b(v) = number of
Z’s which equal Zy) . (Of course, we have Pr(a(v) = b(v) = 1| w) = 1 for all
w.) Write

if #; = Tay,

P ) = Ja()
0

otherwise, (t=1,2,---,k),
1, (5 = 7
pP @) = ) T T I
0 otherwise Z=12---,k).
It is then clear that di(v) = (p°@), ps" @), - -+ , Pi" () and di(») = (P (v),
2P W), -+, pi(v)) are fixed impartial decision rules which depend on v only

through Z;, &, -+, Tk .
THEOREM 4. Let D be the class of all impartial decision rules d(v). Then

r(di| @) =supr(d|w), 7rld]|w =infrd|w
deD ded

for all w in Q.

Proor. Choose and fix an arbitrary impartial decision rule d(v). Let ¢ > 0
be any constant such that the subset Q. = {w:w £ @, ¢ = ¢} is non-empty. Now,
corresponding to each w in Q. the probability density (with respect to n-dimen-
sional Lebesgue measure) of the sample from =; is of the form h.(u)g«(Z:w),
i=1,2, -+, k. Write ¢t(v) = (&, &2, --- , &x). It follows from Theorem 2
that there exists an émpartial decision rule based on #(v) alone, say d; (Z; , %,
-++, &), which is equivalent to d(v) provided w is restricted to Q. . From equiva-
lence and (6), we have

@) r(d|w) = r(de | w)

for w in Q. . Now, since for ¢ 5 j we have Pr(Z; = Z; | w) = 0 for all w, it follows
that (with probability equal to one for all w) the representation of impartial
decision rules based on #; , &2, - - - , & which is given by Theorem 3 coincides
with the representation assumed in Theorem 1 of [1]. An application of this
last theorem (cf. Example 1 in Section 6 of [1]) shows that

®) rdi|w) 2 7(ds @), rde|e) S (] w)

for all w. It follows from (7) and (8) that r(d | w) = r(d | w) and r(d | @) =
7(d | @) for w in Q. . Since both d(») and ¢ are arbitrary, Theorem 4 is proved.
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In conclusion, we deseribe two applications of Theorem 4. Suppose that »
is the outcome of preliminary experiments on m; , o, - -+ , 7 and now it is de-
sired to draw a total of N observations from the & populations in such a way that
the mathematical expectation of ,the sum of the values obtained is as large as
possible. Let d(v) = (pi(v), p2(v), - - - , px(v)) be a suitable decision rule and sup-

pose that Np:(v) observations are drawn from 7, , ¢ = 1,2, --- , k. Then the
mathematical expectation of the sum of the values obtained is N Y_% m;E[p:(v)
| w]. Since the maximum of this quantity is N max {m;, ms, --- , my}, the
expected loss in using d(v) may be taken to be

k
9) N[max {m;} — Zl: m;Elp:() | w]:l.
The expected loss is of the form (6), with ¢;(w) = Nm;for¢ = 1,2, --- , k. It

follows that in the class of all impartial decision rules the uniformly best rule is
to drawn an equal number of observations from populations #; such that Z; =

max {& , %z, - - , &} and none from the others.
Suppose now that it is desired to select one of the populations =, , the object
being to select a population, =, say, such that m, = max {m;, ma, -+, ms}.

As pointed out in the introductory section, the statistician may then employ a
suitable decision rule, say d() = (pi(v), +--, px(v)), in the following way:
given v, he performs a random experiment whose outcome p takes on the values
1,2, ---, kwithPr(p = 2) = p;(v) ¢ = 1,2, ---, k), and selects =, . Write
Mey = max {m;, ms, --- , My}, and set

1 ifm; = mp,
gi(w) =
0 otherwise E=12 - ,k).
Then it is readily seen from (5) and (6) that with the present convention for the
manner in which a decision rule d(») is to be used, we have

(10) r(d | @) = Pr (incorrect selection using d(v) | w).

It follows from Theorem 4 that in the class of all impartial decision rules, the
rule d(v) which is to assign equal probabilities of selection to populations m;
such that £ = max {Z,, Z,, -+, T} and zero probabilities to the rest, mini-
mizes the probability of an incorrect selection uniformly for all w in Q.

The reader is referred to [5] for an investigation from a more general viewpoint
of the problem of minimizing (9) or (10) in the case k = 2. The discussion in
[5] does not presuppose samples of equal size, and the class of all decision rules
is taken into consideration.
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