ON A HEURISTIC METHOD OF TEST CONSTRUCTION AND ITS USE
IN MULTIVARIATE ANALYSIS

By S. N. Roy
University of North Carolina

1. Summary. In this paper two closely related heuristic principles of test con-
struction (to be explained in Section 3), called Type I and Type II methods, of
which Type II is identified with the usual likelihood ratio method, are noticed
as underlying most of the classical tests of hypotheses, simple or composite, on
means of univariate normal populations, and on total or partial correlations or
regressions in the case of multinormal variates. In these situations the two
methods are found to lead to identical tests having properties which happen to
be very good in certain cases and moderately good in others. For certain types of
composite hypotheses an extension is then made of the Type I method which-
is applied to construct tests of three different classes of hypotheses on multi-
normal populations (so as to cover, between them, a very large area of multi-
variate analysis), yielding in each case a test in general different from the cor-
responding and current likelihood ratio test. In each case, however, the two tests
happen to come out identical for some degenerate ‘“‘degrees of freedom.” In
contrast to the likelihood ratio test it is found that in these cases, for general

“degrees of freedom,” the corresponding Type I test is much easier to use on

small samples, because of the relatively greater simplicity of the corresponding
small sample distribution problem under the null hypothesis. In each case a
lower bound of the power function of the Type I test is also given (against all
relevant alternatives), anything like which, so far as the author is aware, would
be far more difficult to obtain for the Type II tests in these situations. In this
paper the general approach to the two methods is entirely of a heuristic nature
except that, under fairly wide conditions, a lower bound to the power functions
for each of the two types of tests is indicated to be readily available, which, how-
ever, is much too crude or wide a bound in general.

2. Notation and preliminaries. As far as possible observations and sample
quantities will be noted by Roman letters and population parameters by Greek
letters; scalars by small letters, matrices by capital letters, column vectors by
small letters underscored, and row vectors by priming them; the determinant
of a square matrix M by | M | ; “positive definite” by p.d.; “positive semidefi-
nite” by p.s.d.; “except for a set of points of probability measure zero” or “al-
most everywhere” by a.e. A(:p X ¢) will indicate that the matrix A isp X g,
and I(p) will stand for a p X p unit matrix. z: N (¢, o), z(:p X 1):N(ECGp X 1),
S(:p X p))and X(:p X n):N(E(:p X 1), Z(:p X p)) will indicate respectively
that the scalar z is normally distributed about a mean £ with a variance o’ the
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TEST CONSTRUCTION 221

column vector z is multi-normally distributed about a mean vector £ with a
(p.d.) covariance matrix Z, and the n column vectors of the p X n matrix X
are independently and multinormally distributed, each column about a mean
vector £ with a (p.d.) covariance matnx Z. Exceptions to this notation will be
clearly indicated at the proper places For the sake of clarity, it may be noted
that the X above has the probability density

1] e 2P exp[—4tr =7(X — HEX' — )],

where £ (:p X n) is a p X n matrix each column of which is the column vector .
Furthermore, dz will stand for ]2 d; and dX for [ [rey JT2%: dza .

Throughout this paper all general discussions will be made in terms of the
denumerable case, because I feel that perhaps the ideas are made clearest that
way. The extension to the nondenumerable case might in general lead to measure
theoretic difficulties, but such difficulties do not arise in the applications (most
of them being nondenumerable cases) treated here. '

The most powerful critical region of size, say 8:(<1), which under fairly gen-
eral conditions will exist and which under slightly less general conditions will
also be unique), of a simple hypothesis H, against a simple alternative H; (such
that Ho, H; ¢ Q, where ¢ = 1, 2, - - - , and where Q stands for a domain of possi-
bilities) will be denoted by w(H, , H;, B:), its complement, the acceptance region,
by w(H,, H;, B:), to indicate that in general both will depend upon Ho, H;

"and B;. The union of regions w(H,, H;, 8:) over different H;, 8; or 2(¢ = 1,
2, --- ) will be denoted by Ugw(Ho, H:, B:) or simply by Uw(Ho, H:, B:),
and the intersection of regions &(H,, H;, B;) over different (s = 1, 2, ---)
by Ne,a(Ho, H:, Bs) or simply by N;a(Ho, H;, 8:). P(Ho, H., B:) will stand
for the power of the most powerful test at level 8; or H, against H;, and will
in general depend upon all the three elements. It can be easily proved and has
been published in an earlier paper [14] that P(H, , H; , 8;) > B: . For convenience
a sketch is given here. Assume, for simplicity of discussion but without any
essential loss of generality, that we have a set of n continuous stochastic variates,
z(:n X 1) or simply z, with respective probability densities ¢x,(z) and ¢x,(z)
(or simply ¢r, and ¢7,) under the hypotheses Ho and H; . Then it is well known
that w(Ho , H; , 8;) and &(H, , H; , B:) are given respectively by

w(Ho, H;, B:):¢n; Z Mn,,
E @(Ho, H;, B:):¢n; < My,
where ) is determined by
P(z e w(Ho, H;, B:) | Ho):B: .

Assume here that ¢ is such that w defined by (2.1) is unique. Integrating the
first inequality of (2.1) over w(Ho , H;, B:) and the second one over &(Ho , H:, B)
we have respectively P(Ho, H:,8:) = M:and 1 — P(Ho, H:, 8:) < A1 — By,
from which, after a slight reduction, we have

(2.1)
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(2.2) P(H,,H;,B:) > B;.

Note that in general A will be of the form A(H,, H;, 8;), depending on all the
elements. Incidentally, any critical region of size 8 for Hy, whose power with
respect to an alternative H is greater than or equal to 3, will be called an un-
biased critical region for Hy against H.

The likelihood ratio critical region at a level, say o, of H, against the whole
class H; ¢ Q, provided that it exists, will be denoted by &(H,, a). As is well
known it is given by

(23) ‘:’(HO ’ a):¢(@) ; /‘(HO ’ a)qs”o(@):

where, for a given z, ¢(z) stands for the largest ¢x,(z) (provided that it exists)
with respect to variation of H; over ©, and where u(H,, «) is given by

(2.4) P((_D € (:)(Ho y (1) |.Ho = a.

Notice that ¢(z) is a function of z only, being independent of H;, but may de-
pend on the fotal domain 2. The power of this test, against any alternative H;
will be denoted by P(H, , H;, a).

Assume now that H, is a composite hypothesis and H;(i = 1,2, --- ) a com-
posite alternative. In earlier papers [8], [13], [14] the author gave a set of suffi-
cient conditions on ¢4, for the availability of similar regions for H,, and a set
of (further) restrictions on ¢x; and ¢x, for the availability, among these similar
regions, of one which is most powerful for H, against H; in the following sense.
Suppose H, and H; are composite hypotheses, each characterized by some speci-
fied and some unspecified elements, so that, if the unspecified elements were
specified, both H, and H; would be simple hypotheses. Now suppose that, among
the similar regions for Hy , there is one whose location in the sample space de-
pends on the specified elements of H, and possibly on those of H;, but not on
the unspecified elements of H, or H;, but which is nevertheless the most power-
ful critical region for any simple hypothesis within H, (obtained by specifying
the unspecified elements) against any simple alternative within H; (obtained by
specifying the unspecified elements). But this “most powerful” is “most power-
ful among similar regions.” If we drop the restriction of similarity and set up
in a straightforward manner the most powerful critical region for the simple
hypothesis in question against the simple alternative in question, then we may
get a (nonsimilar) region having a larger power than that of the most powerful
stmilar critical region just referred to. Such a most powerful similar critical
region may be conveniently called a bisimilar region for H, against H; . The like-
lihood ratio critical region for composite H, against all composite H; £ @ (which
we know how to construct, provided that it exists), can be shown [13], [14] to
be a similar region for H, , under the restrictions just referred to. In this situa-
tion the same notation will be used as introduced in the previous paragraph for
the case of a simple hypothesis against simple alternatives, and the result (2.2)
will also hold, it being noted that, while the regions will be independent of the
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unspecified elements in H, and H;, P(H,, H,, ;) and P(H,, H;, a) however,
might depend on the unspecified elements of H; though not on those of H, .

3. Type I and Type II tests.

3.1. Definitions and some remarks. Consider, for simplicity of discussion but
without any essential loss of generality (for the definitions could be immediately
carried over into the case of composite hypothesis and alternative) a simple
hypothesis H, against a simple alternative H,; such that H,, H,{ =
1,2 - ) e

(¢) Put B; = B(z = 1, 2, --- )'and set up as the rejection and acceptance re-
gions for HyUw(H,, H;, B) and its complement N;o(H,, H;, B) to be called,
respectively, U; and N;. This is defined to be a Type I test for H, against the

whole class H; ¢ Q, the level of significance a being given by
(3.1.1) " P{z e Uws(Ho, H;, B) | Hy) = a(Hy, B), (>8).

Let us for the moment assume nontriviality, that is, that given a < 1, we can
find 8 = B(Ho, a) > 0, for which (3.1.1) will hold.

(ii) Put, in Section 2, N(H,, H;, B:) = u (a preassigned constant) for all
i =1,2,---, and rewrite w(Ho, H;, 8:;) and &(H,, H;, B:) as w*(Ho, H;, 1)
and o*(Hy, H:, p).

Now set up, as the rejection and acceptance regions for H, , Uw*(H, , H; , u)
and its complement N&*(H,, H;, u), to be called, respectively, UF and N¥,
where the 8’s (# = 1, 2, --- ) are subject to A(Ho, H;, 8:) = p (a preassigned
constant). This is defined to be a Type IT test for Hy against the whole class H; £ Q
the level of significance o* being given by

(3.1.2) P(z e Ui(Ho, Hi, p) | Ho) = a*(Ho , ).

Here again let us, for the moment, assume nontriviality, that is, that given
a*(<1), we can find a u such that 8(H,, H;, u) = 8:;(>0) and that (3.1.2) will
hold. This can be easily recognized as the likelihood ratio test by the following
consideration. Notice that w*(I1o, H;, u) (with a preassigned u) is given by

(3.1.3) o (Ho, Hy,y 1):¢n,(2) 2 udm(2).

Any z would belong to Uw*(H,, H;, ) if for that z, there were at least one
H; ¢ Q for which (3.1.3) holds. It is easy to see that this would be accomplished
if for that z:the largest ¢x,(z) (under variation of H; over Q) were = udn,(z).
Hence it is obvious that )

[]iw*(HO 1) Hi ’ ﬂ‘):¢(@) g WHO(@)
n,c:)*(lfo s Hiyw)ig(z) < I“d’Ho('?)'

3.2. An obvious property of the two types of lest. Notice that U; includes all
w(Hy, H;, B) and U7 all w*(H, , H, n). Now putting

P(@S(]zlll,) EP(Ui,Hi,a)andP(g:s U,,klfll) EP(,U?,H,’,C{)

(3.1.4)



224 8. N. ROY

we shall have from Sections (2) and (3) for the two types of tests
(3.2.1) B(Ho,a) =8 < P(H,,H;,B) =PWU:,H;,a) < P(Hy, Hi,a) =1
PHy,H;,a) > a
“B*(Ho , Hy, a) = B < P*(H,, H;, p)
< P(UY{,H:,a) £ P(H,,H;,a) £ 1
P(Hy,,H;, o) > a.

3.2.2)

(3.2.1) and (3.2.2) give respectively, for all H; ¢ ©, the lower bounds P(H,, H; , 8)
and P*(H,, H;, p) for P(U:, H;, a) and P(UY, H;, u), which, however, in
general, would be far from close except sometimes for large ‘“‘deviations” from
H, . With more knowledge of the forms of ¢x, and ¢x, it is often possible to get
far closer lower bounds; even the actual powers are often computable without
much difficulty (and turn out to be pretty high) as for example in most of the
classical tests on normal populations.

It is easy to see that the results of (3.1) and (3.2) could be easily generalized
to cover the case of composite H, against composite H; ¢ @ provided that we have
similar regions for H, and a bisimilar region for H, against H; . This, therefore,
need not be separately treated.

3.3. Display of two classical tests as Type I tests. (i) Almost all classical tests
on univariate and multivariate normal populations (ii) most classical tests on
other types of populations and (iii) many tests on multivariate normal popu-
lations proposed in recent years are known to be derivable (and indeed many
of them have, in fact, been derived) from the “likelihood ratio” principle, so
that they belong to Type II. The author finds that all the customary tests in
category (i), for example, the test of significance of (1) a mean, (2) a mean dif-
ference, (3) total or partial or multiple correlation, and (4) regressions, (5) the
F-test in analysis of variance, (6) the test of the hypothesis of equality of stand-
ard deviations for two univariate normal populations, (7) the test based on
Hotelling’s T, all belong to Type I as well. Those classical tests in category (ii)
that the author has examined so far also all belong to Type I. Coming to those
situations that are sought to be handled by tests proposed under category (iii),
the author finds that the likelihood ratio tests offered so far, while they auto-
matically belong to Type II, do not belong to Type I. On the other hand, if,
in these situations, one carries out (see Section 5) the spirit and method of dis-
criminant analysis, one gets tests (see Section 6) which belong to Type I in a
sense slightly more general than we have indicated so far.

In this section we consider, for illustration, two well known classical tests
and show that they. belong to Type I.

(i) For N(4, ¢°) and N (&, o°) the classical test of H(¢ = &) = H, against
H(% = &) = H at a level a is based on a critical region given by

(3.3.1) t=2h or = —b,
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where
t = (m + ne — 2o/l + naliie@ — &)/ {(m — st + (ne — 1)s3}},

and { is given by P(t = & | Hy) = a/2 and where (%, %2), (51, s2) stand for the
means and standard deviations of two random samples of sizes n;, and n, drawn
from N (%, %) and N (£, o°), respectively. This is well known as a likelihood
ratio test but it is easily checked as Type I as well, in the following way. It is
well known that ¢ = {, is a one-sided uniformly most powerful (bisimilar) region
of size a/2 for the composite H, against the composite H(¢, > £) = H, and so
also is t < —1t for Hy against H(§, < &) = H.; taking the union we have
(3.3.1) of size a.

(ii) Consider the testing of a general linear hypothesis in analysis of variance
which, as is well known, can be formally reduced to the following. Suppose we
have random samples of sizes n;, means Z; and standard deviations s;, drawn
respectively from N(¢, ¢°)(@ = 1,---, k), and suppose we want to test
H(t = & = --- = &) = H, against the whole class H of (&, -+, &) violating
Hy.Putn = Z'Z,l n;; & = E'ﬁ-,_l n&i/n; £ = Z'§=1 n;§:/n. Now the classical
F-test for H, , which is well known to be a likelihood ratio or Type II test has
at a level « the critical region given by

3.3.2) F 2z F,

where F = [Dkani@ — 8%k — 1)] + [2ia (i — 1)si/(n — k)] and
where F, is given by P(F = Fo| Hy) = a.

To recognize this as a Type I test as well we proceed as follows. It was ob-
served in earlier papers [8], [13] that among similar regions for H, (which exist)
there is a most powerful (bisimilar) region for H, against any specific
(&, -, &) = & violating Ho , the region of size, say, 8 being given by

(3.33) 12t
where t = \/n — 2 cot 6;

k k E
cos § = Z ni(E; — ) (& — s)/[X} {ni(@& — 2)° + (ni — 1)8§}]

=1 [

k ]

['Z_:l ni(E: — 5)2]

and where f is given by P(¢{ = & | Hy) = B. It was also noticed in those papers
that this ¢ has exactly the usual ¢-distribution with (n — 2) degrees of freedom.
Notice that &, = &(n, 8) and 8 = B(n, &). To obtain now the union of regions:
t = t over different sets of (&1, --- , &) we note that a given set of (observed)
Z:s and s;’s would belong to the union, if for that set there were at least one ¢
sich that ¢ = # . The union is thus easily checked to be given by: the largest ¢
(by varying over &, - -+, &) = f (which is fixed). But by (3.3.3) the largest ¢
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would correspond to the largest value of cos 6, and, given #/s and s,’s, the largest
value of cos 6 (under variation over %, - - - , &) is easily seen to be given by:

(639) o050 = [ Snta— 2] /]2 (0w = 0ot 4 mta - 74 ],

= =

so that the largest ¢ is given by

(33.5) t=(n— 2)} [Z ni(: — %) ]’ / [2: (ns — 1)83]*.

=

Therefore the union of regions: ¢ = 4, is given exactly by (3.3.2), which is the
critical region of the F-test. Notice that given the « of the F-test, Fy is obtained
from (3.3.2) in the form Fo(k — 1, n — k; a); and next by identifying the union
of regions ¢ = &, with F = F, we have
th=[(k — D — 2F/(n — B) =tk — 1,n — k; a);
and next from (3.3.3) we have
B=pBnt)=8Fk—1,n—Fk;a).

3.4. Some further remarks on the two types of test. It may be noted (See Sections
2 and 3) that by specializing the 8.’s (the sizes of the most powerful critical re-
gions against different alternatives) in {wo special ways we get in a heuristic
manner the two types of test. By specializing the 8.’s in other ways other heu-
ristic principles could be set up, some of which, in special situations, might be
“better” than the Type I or Type II tests. It has already been observed that in
many situations Type I and Type II tests would coincide. This does not mean,
however, that in those situations, 8(H,, H;, «) of the Type II test would be
the 3 of the Type I test. Given H, and the H,’s, it would be possible to find a
B for Type I and a p for Type II such that the same critical region for H, against
the whole class H; ¢ © could be looked upon as Ug,w(H,, H;, B) in relation to
the first type and also as Un,w*(Ho, H;, u) in relation to the second type.

The following theoretical question or group of questions now under investi-
gation is extremely important. Under what general restrictions on the probability
law of £ and on Hy and H; ¢ Q would either or both of the tests be nontrivial
(in the sense discussed in Section 3) and usable (in the sense of having a distribu-
tion problem amenable to tabulation), and unbiased (against all relevant alter-
natives) and/or admissible and/or reasonably powerful (in the sense of having
not too bad'a power against all relevant alternatives)? So far as the author is
aware, these questions have not yet been adequately discussed in a general
manner (let alone been answered) even for the likelihood ratio or Type II test
(which has so long been extensively used in practice), and no attempt will be
made in this paper to discuss these questions. The advantage, however, of hav-
ing two such heuristic principles (with the possibility of having two different
tests in many situations) is that it gives us more elbow room than we would
lave had with one such principle, in the matter of construction of nontrivial,
usable and “pretty good” tests.



TEST CONSTRUCTION 227

4. Extended Type I test (and an obvious property of it). Consider a composite
hypothesis H, against a set of composite alternatives H, ¢ @, (i = 1,2, --- ).
It often happens, as for example in the three broad situations discussed in Sec-
tion 5, that, while there are similar regions for H,, there is among these no
most powerful (bisimilar) region for Hy against any H,(i = 1,2, --- ), but that
we have instead the following situation. Suppose we have composite hypothe-
ses Hoj(j = 1, 2,---) such that N,H,; = H, and composite alternatives
Hij(i =1,2,+--3;7=1,2,---) such that N;H;; = H,. Notice that H,; and
H,; have more unspecified elements than H, and H; respectively. It may well
be that we have (as in the cases discussed in Section 5) not only similar regions
for H,; but also, among these, a most powerful (bisimilar) -region for H,; against
any H;; (one for each ¢ withj = 1,2, --- ;and ¢ = 1,2, -- - ). Consider critical
regions w(Hy; , H;;, B) of size B each. Then by our test procedure, over N,N; of
&(Ho,, Hi;, B) (which we call N;; for simplicity), we are anyway accepting
N,H., , that is, Ho and over its complement U,;Uw(H,; , H;; , B) we are rejecting
at least one H,,; and therefore H, itself. Suppose we set this up as a heuristic
test for H, against the whole class H; ¢ Q. Then the critical region will be
U,;U.w(Hoj;, H;j, B) or Uj; of size a, given by

(+.1) PlzeUj|Hy) = a

so that & = a(H,, ) and 8 = B(H, , a). As before, nontriviality will be assumed,
and it is easy to check that we shall have for all 7 and j the following inequality:

(4.2) B < P(Ho;,Hi;,B) = P(Uji,H:,a) £ 1.

It may be noted that while w(Ho;, H;;, 8), a bisimilar region of size 8 for H,;
against H; , is independent of the unspecified elements of H,; and H,; and while
the location of U;; must be and its size might be (as indeed it is for all the cases
considered in Section 5) independent of the unspecified elements of H,; and
H,;, P(H,;, H;;, B), but might involve the unspecified elements of H,; and
P(H, , H;, a) involve those of H; . As observed in Section 3, the lower bound to
the power of the test, given by (4.2), while it is in general easily available, is,
at the same time, much too crude. With more knowledge of the probability
law a much closer lower bound can often be found as will be exemplified in later
sections.

5. Application to three multivariate problems.

5.1. Statement of the problems. Three different types of hypotheses will be
discussed here, namely, (i) the hypothesis of equality of covariance matrices of
two p-variate normal populations, (ii) the hypothesis of equality of £ means for
each of p variates for k& p-variate normal populations with the same covariance
matrix (which is formally tied up with the general problem of testing a linear
hypothesis), and (iii) the hypothesis that in a (p; 4+ p.)-variate normal popula-
tion the set of, say, the first p, variates is uncorrelated with the set of the last
p2 variates. In symbols, using the notation given in Section 2, we can rewrite
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these hypotheses as (1) H(Z, = Zo)(=H,) against all H(Z; = 2,)(=H), (i)
HE = &+ = &)(=H,) (assuming a common T) against all H(>H,) (as-
suming again a common Z) and (iii)) H(Z;; = 0)(=H,) against all H(Z;: = 0)
(=H), where the (p, + p2) variajes have a covariance matrix = of the follow-
ing structure:

<2u 212) y 40
(5.1) Z = \Z12 Zp/ p:.
D1 D2

5.2. Direct Type I construciion not possible. It is well known that there are
infinitely many similar regions for each of the above composite hypotheses
but no most powerful (bisimilar) region for H(Z, = Z2,) against any specific
H(Z; # %) or for H(¢; = --- = £,)(=H,) against any specific H violating H,
or for H(Z;, = 0) against any specific H(Z12 # 0), so that direct Type I con-
struction will not work here.

5.3. Reduction lo pseudo-univariate and pseudo-bivariate problems. At this
point suppose that, starting from an z(: p X 1) which is N (¢, Z), we consider a
linear compound of z, namely g’z (with an arbitrary constant, that is, nonsto-
chastic g'(:1 X p) of nonzero modulus) which is a scalar well known to be
N(§, w'Zu). Note that ¢’ and y’ Zy are also scalars. Suppose further that we

also start from
(RO 6 2)
Z2/ D2 §2 2w Zn//,

and consider linear compounds giz; and psze (where w(:p; X 1) and g(ip: X 1)
are each nonnull); then these two scalars are well known to be distributed as a
bivariate normal with a correlation coefficient

(5.3.1) p(ur, ) = pro = i Zuome/[(wiZuumn)* (o Zaoma)’].

Now suppose that, in place of (i), (ii) and (iii) of 5.1, we consider respectively

(iv) H(W'Zw = w'Zo)(=H,,) against all H(4'Zi # u'Zo)(=H,), (u fixed),

(v) Hwa = --- = w'&)(=H,,) against all H,_.(féHog), (1 fixed) and

(vi) H(u1Zwue = 0)(=Hoyy,) against all H(uiZuepe # 0)(SHyuw) (o, we
fixed).

We now consider the totality of all nonnull g for (iv) and (v) and all nonnull
w and p, for (vi). Notice that (i) NH(W'Zw = #'Zw) = H(Z: = ), (i)
NHWE = - = wh) = H = - = &) and (i) Nyyge H@iZ i = 0) =
H(Z; = 0). We could have worked in terms of any subset of such w’s which
leads by intersection to the same H,, but this we do not do here. It may be
noted that by the procedure to be used here, apart from measure-theoretic
difficulties which, however, do not arise in these applications, the total set of
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&’s or any subset of it (of the kind considered) will uniquely define an extended
Type I test associated with the total set or with that particular subset. Next suppose
that, in the alternative, under (iv), (v) and (vi), we substitute “specific”’ for
“all” and thus have three new sit}lations (vii), (viii) and (ix). It is well known
that for each of the situations (vii), (viii) and (ix) we have one most powerful
(bisimalar) region, so that from these we can construct respective Type I regions
for the univariate situations (iv) and (v) and the bivariate situation (vi), and
from these Type I tests we can try to construct the respective exfended Type I
tests for the situations (i), (ii) and (iii). This ties up (in the Section 4) the two
p-variate problems (i) and (ii) with the two univariate problems (iv) and (v),
and the (p; + p;)-variate problem with the bivariate problem (vi).

5.4. A wuseful notation and reduction. For an observation matrix X(:p X n)
with elements za(z = 1,2, -+- , p;A = 1,2, - -+, n),les us put & =2 ruza/n,
(GZ=2,---,p)and '(= &, - -+, Tp). Then the covariance matrix S(:p X p)
will be given by (n — 1)S = XX’ — nzz’. Now suppose that in the situation
(i) we have two observation matrices X,.(:p X n,), p < n, — 1, two mean
vectors z,:(p X 1) and two covariance matrices S,(:p X p) such that
(n, — 1) 8, = X, X, — nz.z) (r = 1, 2), so that S, is always at least p.s.d. In
situation (ii) assume that we have k observation matrices X,(:p X n,); mean vec-
tors z,(:p X 1); a grand mean vector z(:p X 1) such that z = =n,z,/n, where
n= 2 % m and p < n — k; a covariance matrix of means S*(:p X p) defined
by (k — 1)8* = XX’ — nz 2/, where X(:p X k) = (v/mg1 - - - V/ns 7); k co-
variance matrices S,(:p X p) such that (n, — 1)8, = X, X, — n,z,z, ; a pooled
covariance matrix S(:p X p) such that (n — k)S = >_*_i(n, — 1)S, so that
both S* and S must be always at least p.s.d. Finally in situation (iii) suppose
that we have an observation matrix X and a mean vector z given by:

Xi D
Z
X =\X,/p, and @E<'l>pl,
n

Z2/ P2

and a covariance matrix S(:(p, + p2) X (p1 + p2)) given by:

Su Slz) 4!

( S = ( D <S s (XIX;. XIX;> <$1>( 12D
n — =n - . = -n T1T2).
] 12 2/ P2 XzX; XzX; - 142
D1 P2

Here we observe that 8 must be always at least p.s.d. and also assume that
pr=pandp +p:=n—1

5.5 Type I tests for the situations (i), (v) and (vi).

(iv) Put F, = u'Sws/u'Seu and notice that, at a level 8, for H(x'Zi = p'Zop)
(=H,,) against all H(4'Zys > u'Z:u) we have the one-sided uniformly most
powerful (bisimilar) region: F, = Fo, and for H(y'Zis = u'Zou)(=H,,) against
all H(u'Zw < w'Z.u) we have the one-sided uniformly most powerful region:
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F, < Fq, where Fy and F; are given by: P(F, 2 F, | Hy) = P(F, = Fs | Hy,) =
B. Notice that this F, has the ordinary F-distribution with (n, — 1) and (n, — 1)
degrees of freedom. The Type I critical region will now be of size 28, being given
by

(55.1) @i (F, 2 F)UF, £ Fy), o :F,zF, o £Fq.

For n;, = m, this will be an unbiased critical region, but, for n; > n,, this will
be hiased for certain small deviations and unbiased for all large deviations from
the hypothesis. In any case, in this situation it is possible to construct a better
(but slightly more difficult test) which will not be discussed here.

(v) For H(w'§ = --- = w)(=H,,) against any specific H,(% H,,) there is
the most powerful (bisimilar) critical region (discussed in Section 3) (of size,
say, ¥) which is a one-sided ¢-region, and by taking the union of these regions
(for fixed u but by variations overé, , - - - , &), we have the Type I region given by

(5.5.2) F, = yS*u/w'Su = Fo,

when F, is obtained from P(F, = F, | Hy,) = B.

This is also well known to be a Type II or likelihood ratio test having in this
situation various good properties (including unbiasedness and admissibility).
Notice that this F, has the ordinary F-distribution with (k — 1) and (n — L)
degrees of freedom.

(v1) Put 1y, = wiSims/ (1Su)} (mnggz) and notice that, at a level 8, for
H(uiZpue = 0) (= Houy,) against all H(uiZpwe > 0) we have the one-sided
unlformly most powerful (bisimilar) region: r,,,, = 7o and for Hy,,,, against all
H(uiZpue < 0) we have the one-sided uniformly most powerful (bisimilar)
region 7y, = —7o, Where 7 is given by:

(5.5.3) P(Tywz = 7o l H‘)EIL‘2) =8

Notice that r,,,, has the distribution of the ordinary total correlation coefficient
on a sample of size n. The Type I critical region will be of size 28, being given by

(5.5.4) . Wuypat Tpypy = 70) Uy £ —10),

that is, |7 | = ro|or* = 7g .
This is well known to be also a Type II or likelihood ratio region having in this
situation various good properties (including unbiasedness and admissibility).
5.6. Actual construction of extended Type I tests for the situations (¢), (i) and*
(727).
(i) By the test procedure (5.5.1), over Fy < F, < Fo we accept H(y'Z1y =
' Zau) so that over N[Fo < F, = ' Sus/u’Sou < Fo) we accept NHWZw =
W' Zop) = H(Z, = Z,) = H,, and thus over its complement U,[F, = Fo or £ Fy)
we reject H, . This may thus be set up as the extended Type I test To obtain
UylFy =z Foor £ Fs) we note that a partlcular set, of observations, that is, a
partlcular set of (S, Sz) would belong to the union if for that (8;, S;) there were
at least one g such that Fu = Foor < Fy. It is thus easy to check that U, WlFy 2
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Foor < Fq] is precisely equivalent to: the largest F, = F, and/or the smallest
F, = Fy, the “largest” and the “smallest” being under variation of g (for a given
set of 81, Sz). Now, given (Si, S:), the largest and smallest value of p'Siu/u’Sen
are easily seen to be the largest and smallest roots, say 6, and 6;, of the p-th
degree determinantal equation in @

all the p roots 6, 6, - - - , 8, being in this situation a.e. positive, since S; and
S, are by the definitions and assumptions of subsection 5.4 of Section 5, a.e.,
p.d. (each of rank p). Starting out from the Type I test (5.5.1) for Ho, we have
for H(Z, = Z;) the extended Type I critical region

(5.6.2) 6, = Foand/or 6, < Fy.

To determine the size of this critical region, or more properly, given the size
a, to find F, and Fg , we have to have the joint distribution of (6:, 6z, - - - , 6,)
on the null hypothesis H(Z; = Z,) which was obtained in 1939 by a number of
workers [3], [4], [7], [10] and which was found to be independent of the common
value of Z; = 2, and also of & and &, that is, of all nuisance parameters. Start-
ing from the joint distribution of (8, ;- , 6,) on the null hypothesis, we can
obtain, by a technique given in earlier papers [9], [12], the joint distribution of
(6, , 8,), from which F, and Fg will be available, in terms of @, by using

P(O,, = Fo 2, = 22) = P(01 =< F(; l 2 = 22), and P(0 g Fo and/or

(5.6.3) B ,
0 Fo|Z1=23)) =oa.
(ii) By the test procedure (5.5.2), over F, = u'S*u/u'Sp < Fo accept H(y'é: =
- = w'£), so that over N,[F, < Fo] we accept N,H (w6 = --- wé) = H¢ =
... = &) = H,, and over its complement U,{F, = Fo] we reject H, . We set it
up as the extended Type I test for Ho, and note, as before, that U,F, =
w'S* u/w'Su = F,)is precisely equivalent to: the largest u'S*u/u'Su = Fo, the
“largest” being under variation of y (for a given set of observations, that is, for
a given set of S* and S). As before, given S* and S, the largest value of u'S*u/
u' Sk is checked to be the largest root 8, of the p-th degree determinantal equa-
tion in 6

(5.64) | §* — 68| = 0.

From the definitions and assumptions of (subsection 5.4) of Section 5, it is easy
to check that S is, a.e., p.d. while S* is, a.e., at least p.s.d. of rank ¢ = min
(p, & — 1). It will of course be, a.e., p.d. if p = k& — 1. In any case we can say
that, of the p roots of (5.41), p — ¢ will be always zero, while g roots, to be called
6,,---,0,,will be, a.e., positive, where ¢ = min (p, k¥ — 1), so that 0 < 6, =
... £ 6, < o (suppose). The extended Type I critical region for H, is thus

(5.6.5) 6, = Fy.
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To determine the size of the region, or rather, given the size a of (5.6.5), to
determine F,, we observe what was noted in the earlier papers [4], [7], [10],
namely, that the joint distribution of (8, ---, 8,) (on the null hypothesis) in
this case is exactly of the same form as that of (8, - -- , 8,) of the previous case
(on the null hypothesis in that situation) and that therefore the distribution of
any root, say the largest, will come through by the same technique as was men-
tioned for the previous case and will also be independent of all nuisance param-
eters. We shall thus have F, given, in terms of «, by,

(5.6.6) P, = Folbéi=-=8&) =

For k = 2 we shall have ¢ = 1, so that there will be just one nontrivial sample
root 8,(=6 suppose), and just one nontrivial population root 6,(=6 suppose)
(which will be zero on the null hypothesis and > 0, on the nonnull hypothesis).
This 6 is easily checked to be Hotelling’s T and its distribution both on the null
and nonnull hypothesis are well known [1], [5] and relatively easy, so that
(5.6.5) and (5.6.6) happen to be computationally much simpler in this situation.

(nl) By the test procedure (5.5.4), over 7y, = (u1Sume)’/[(wtSum)(u2Sazns)]
> 7, we reject H(y1Suu = 0) = Hom,, and over its complement accept this
hypothesis, so that over Ny, < ro] we accept Ny H (i1Zu2 = 0) = H,
and over its complement U,,,,[ri,, = 73] reject Hy. We set this up as the ex-

tended Type I test for H, and note that

UL‘IEz[r}lEQ = (H;Slﬂl?)z/(uisllul)(M;S%Aﬂ) = 7'6’]

is exactly equivalent to: the largest value of
(41S12t2)’/ (w1 Suupss) (s Seoie) 2

the “largest” being under variation of y; and g, (for a given set of observations,
that is, for a given set of Sy, Ss and Sy;). As before, the largest value of this
expression is checked to be the largest root 6,, of the p;st degree determinantal
equation in 4

(5.6.7) | 68u — 812872 S12 | =0.

From the definitions and assumptions of subsection 5.4 of Section 5, it is easy
to see that S and, therefore, Sy and Sy are, a.e., p.d. and Sy, is, a.e., of rank p, .
Under these conditions it is well known and proved in a number of places [6],
[15] that the p; roots of (5.6.7) will all, a.e., lie between 0 and 1, satisfying, say,
0< 656, = = 0, <1. The extended Type I region for H, is thus

(5.6.8) 0, = 73

To determine the size of this region, or rather, given the size «, to determine
re , we observe that the joint distribution of (6;, - - - , 6,,) on the null hypothesis
in this case goes over (under a simple transformation from cosine to cotangent)
into that of the joint distribution of the roots (on the respective null hypotheses)
in the two previous cases and the same technique for finding the distribution of
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the largest root also goes through. As before, this distribution will also be inde-
pendent of all nuisance parameters. We shall thus have r; given, in terms of «, by,

(5.6.9) P(6,, = 75| 22 = 0) = a.

6. Lower bounds of the powers of the test regions (6.6.2), (6.6.5) and (5.6.8)
for the hypotheses (i), (ii), and (iii).

6.1. Observations on the actual power functions.

(i) It is well known that on the nonnull hypothesis the joint distribution of
(6, -+, 8,) of (5.6.1) (and hence of (6; and 6,)) also involves as parameters
only the p roots 6,, ---, 6, of the population determinantal equations in 6,

(6.1.1) | 2 — 62, = 0.

(Notice that, assuming =; and 2, to be both p.d., these roots will all be positive
and they will all be unity if and only if Z; = Z,, that is, on the null hypothesis
in this situation.) The exact distribution of (61, - - -, 6,) or of (6,, 6,) on the
nonnull hypothesis will be quite complicated and whatever reduction is al-
ready known to be possible [11], will not be discussed here. We shall merely
write the power function formally as:

Pl6, = Foand/or 6; < Fg | 2, = 2y

(6.1.2)
= P{a;nl)n2;p; 61,0z, - 76171’

to indicate on which parameters the power depends.

(ii) To discuss the power function of the region (5.6.5), we use the convenient
notation: £ = X%y nd/n; £(p X k) = (Vny, -+, Vade); (B — 1)Z* =
g’ — nft’; denote by = the (assumed) common p.d. covariance matrix of the
k populations. We note that Z*(:p X p) is p.s.d. (and might also be p.d.) of
rank r < min (p, k — 1), where r is the rank of the matrix,

WVt =8, -, Ve — 9).

Notice that the rank of this matrix must be < min (p, & — 1). Notice further
that =* will be zero if and only if & = & = --- = &, that is, on the null hy-
pothesis in this situation. We next observe, as is well known, that on the non-
null hypothesis the joint distribution of (6;, --- , 6,) of (5.6.4) (and also of 6,)
will involve as parameters only the 7(<¢ = min (p, ¥ — 1)) positive (the p — r
others being zero) roots of the p-th degree population determinantal equa-
tion in 6,

(6.1.3) |3* — 62| = 0.

As in the previous cases, so also here, the exact distribution of (6, -- -, 8,) or
of 8, on the nonnull hypothesis will be quite complicated and also different from
that of the previous situation and whatever reduetion is already known to be

+possible will, as before, not be discussed here. We shall again formally write the
power function as
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P[6, = Fo | under violation of H(§; = --- = §)]

(6.1.4) }
= Pla;n, k, p; 01, -+, 6/},

to indicate the dependence on the relevant parameters. When & = 2 we have
g = 1,r = 1, and in this case (6.1.4) will be the power function of Hotelling
T-test, which is computationally quite manageable.

(iii) To discuss the power function of the region (5.6.8), we observe what is
well known, namely that, on the nonnull hypothesis, the joint distribution of
(8, -+, 0,) of (5.6.7) involves as parameters only the roots of the p;-th degree
population determinantal equation in 0,

(6.1.5) | 021y — 2% 2| = 0.

Assuming a p.d. Z, it is also known that Z;; and 2, are both p.d., all roots
being less than 1 and ¢q roots being positive and p; — ¢ being zero, where ¢ is
the rank of (¢ < p1 < p2). We write them as: 0 < 6, < --- £ 6, < 1. We
shall not further discuss the complicated nonnull distribution of (6y, ---, 6,,)
or of 6, , but merely write down formally the power function of the critical
region (5.6.8) as,

(61.6) P[opl = 7’3‘212 #= O] = P{a; n, P1, P2 61, -, 901}’

to indicate the dependence on the relevant parameters.

Although the exact nonnull distributions and hence the exact power functions
would be quite complicated in all the foregoing cases we could, if we wanted to,
obtain lower bounds, by using (4.2) and noting that the nonnull distribution
for the univariate situations (iv) and (v) associated with (i) and (ii), and the
bivariate situation (vi) associated with (iii), are all known in computationally
manageable forms. But it is possible, as is shown in the next two subsections
(6.2) and (6.3), to obtain much closer lower bounds to the power functions
(6.1.2), (6.6.4) and (6.1.6). This is accomplished as follows.

6.2. On inwariance and independence. It is well known [15] that

(i) the roots of (5.6.1) are invariant under the transformation

Si(:p X p) = u(p X p)Vi(ip X p)u’(:p X p) and
S:(ip X p) = u(ip X p)Va(ip X p)u’(ip X p),

when p is any constant (i.e., nonstochastic) nonsingular transformation matrix,
(ii) the roots of (5.6.4) are invariant under the transformation:

S8*(:p X p) = u(ip X p)V*(tp X p) X '(:p X p) and
S(:p X p) = u(:p X p)V(p X pu'(:p X p),

where p is any constant nonsingular transformation matrix, and finally
(iii) the roots of (5.6.7) are invariant under the transformation:

SuC:pr X p) = m(:pr X p)Vu(ip X p) X wi(ipr X 1),
Saa(ip2 X p2) = pa(ip2 X Do) Vas(ip2 X p2) X pa(:p2 X P2)
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and
Su(ipr X p2) = m(ipr X p)Ve(ipn X po) X ué(:m X p2),

where u; and u; are any two corfstant nonsingular transformation matrices.

We next notice that
(i) there exists a nonsingular transformation matrix (not necessarily unique),

I‘(:P X P) = (Hly Tty “p)p)

under which uZu’ = De and pZ’ = I(p) (where Do is a p X p diagonal matrix
whose diagonal elements are ©;, - - -, 8,) and which transforms the p original
variates into p new variates distributed in a canonical form, so that, for this
set of p w’sC = 1, 2,---, ), (wiSwss/wiSous)/(wiZwei/wiZams), that is,
(iSui/wiSems) ©;G = 1, -+ -, p) will be distributed as p independent F’s, each
with (n; — 1) and (n; — 1) degrees of freedom,

(ii) there exists a nonsingular matrix (not necessarily unique), u(:p X p) =
(w1, -+, up)p, under which uZ*u* = De and pZu’ = I(p) (where De is a diagonal
matrix, of whose p diagonal elements, p — r are exactly zero, while the rest, 7 in
number, are 6;, ---, 6, > 0), and, furthermore, that this transforms the p
original variates into p new variates distributed in a canonical form, so that for
this set of p u's(i = 1, 2,--+,p), (M:’S*Ih’/H(’SHi)(i =1,2,---, p) will be dis-
tributed as p independent F’s each with (¢ — 1) and (n — k) degrees of freedom.
We note that out of these p F’s, p — r are necessarily central F’s (i.e., with “de-
viation parameters” equal to zero) and r F’s are noncentral with “deviations
parameters”, (6, - -+, 6,) and

(iii) there exist nonsingular matrices (none necessarily unique),

mCpr X p1) = (e - dp)P1,

ue(ip2 X p2) = (w2 * -+ ppy2)P2,
under which pZup; = I(p1), peZemz = I(p:) and
mZps = (Dve O)py

i

(where Dvg isa py X p; diagonal matrix of whose diagonal elements, p, — q are
zero and the rest are nonzero, being 6,, --- , 6,), and which transforms the
original (p; + p.) variates into two new sets of p; and p, variates, jointly dis-
tributed in: a canonical form with covariance matrix:

I(p) (D\/é‘ 0\ »

D.w 2
( ) I(p,)
0 P2 — P

y 41 Pr P2— D1

"This means that from the sets ya( = 1,2, -+, p1) and pp(G = 1,2, -+, p2)
it is possible to pick out linked gy and pp( = 1, 2,---, p1) such that
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(i Suomi)’/ (winSumi) (wSwue)@ = 1,2, - -+, p) are distributed as the squares
of p: independent correlation coefficients r; with (n — 2) degrees of freedom
each, the distributions involving ©; = pi( = 1,2, ---, ¢ £ py) as “deviation
parameters’. The absolute value of+the total correlation coefficient will be indi-
cated by enclosing the correlation in vertical bars. It is the distribution of this,
that is, the distribution of multiple correlation when p = 2, that will come into
the picture. It is possible to go even beyond this and pick out linked u; and
pe(@ = 1,2, ..., py — 1), and at the last stage a u,,1 linked with a set of
(p2 — pr + 1) go’s@ = p1, ;1 + 1, - - -, p2), such that there are p, independently
distributed | correlations |, of which (p; — 1) are | total correlations |, and the
last one is a multiple correlation between the p,th variate of the first p;-set
and the (p1, ;1 + 1, -+, p.) variates of the seecond p,-set. The deviation pa-
rameters heing 8;(0 < 6, £ --- £ 6, < 1), we could so arrange that the first
p1 — ¢ sample (total) | correlations | had zero deviation parameters to go with,
the next ¢ — 1 sample (total) | correlations | had respective (and one each)
deviation parameters (0;, - - -, 6,_1) to go with and the last sample (multiple)
correlation had 6, to go with.

6.3. Actual construction of lower bounds. Now notice that

(1) in the first problem, the region (5.6.2) includes as well all the F-regions
considered under (i) of the foregoing subsection (6.2), so that, to the power
function P of (6.1.2) we shall have a lower bound given by

»
(6'3'1) P{a;nl)n2;p;ely e 191’} >1 - H[l - P(F g F()OI' g F(; l el)]
=1
(each with n; — 1 and n, — 1 degrees of freedom), which is easily calculable.
(ii) in the second problem, the region (5.6.5) includes as well all the F-regions
considered under (ii) of the preceding subsection 6.2, so that, to the power func-
tion P of (6.1.4) we shall have a lower bound given by

P{a;n’k:p;els et 167}

(6.3.2) r

>1—[1 — P(central F = Fo)I”" ]1 [1 — P (noncentral F = F, | 6,)]
=1

(each with & — 1 and n — % degrees of freedom), which is easily calculated;
and finally

(iii) in the'third problem, the region (5.6.8) includes as well all the | correla-
tion | regions considered under (iii) of the foregoing subsection 6.2, so that,
to the power function P of (6.1.6) we shall have a lower bound given by

P{a;n P1,P2;91;“‘ ’ea}

- - P1—Q
(6.3.3) > 1 — [1 — P(* Z r¢ | null hypothesis)]

X H[l — P(r* 2 15| o7 = 0)),

=1
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(each with n — 2 degrees of freedom), which is easily calculable, being really
the power function of the multiple correlation of the first kind [2], when p = 2,
for which tables are in part available which could easily be extended with
modern computing facilities. .

The lower bound (6.3.3) could be easily improved, when p. > p,, by the fol-
lowing consideration. Going back to the observations made at the end of sub-
section 6.2 of this section (on independence between two sets of variates), we
notice that since the region (5.6.5) includes p1 — 1 | ({otal) correlation | regions
and one (multiple) correlation region we shall have a lower bound (easily checked
to be larger than (6.3.3)) given by

Pla;n,p,ps; 61, -+ ,0,} >1 — [1 — P(r* 2 r; | null hypothesis)]** ™
(6.3.4)
X H[l — Pzl |pt=0)] X [1 — P(B® 2 1| o2 =0,)],

where-all factors except the last are on |total correlations | distributed with
(n — 2) degrees of freedom, while the last factor is on a multiple correlation
distributed with (n — 2) degrees of freedom and (p: — py).

It may be noted that in (6.3.2) both sides of the inequality are “known,” that
is, computationally accessible when £ = 2, that is, ¢ = 1 and » = 1, the left-
hand side being just the power function of Hotelling’s T, while the right hand
is also easily available (in this as in all other cases).

7. Concluding remarks. It is of considerable importance at this stage to ask
how ‘““good” the lower bounds indicated in (6.3.1), (6.3.2) and (6.3.3) or (6.3.4)
are. A lower bound to the power could be said to be “good” if it were (i) close
to the actual power, and/or (ii) if it were itself pretty large, being greater than
the level of significance « for reasonably large values of the deviation parameters
and possibly getting larger as those parameters increase. For all the three tests
condition (ii) has been numerically checked to be true over a fairly wide range
of test values of the several parameters involved, and part of that material will
be offered in a later paper. With regard to condition (i), in general, that is, for
small samples, not only do we not know the actual power (in which case the
search for a lower bound would have been redundant) but at the moment we
do not even know an upper bound of the expression: (actual power — given
lower bound to it) <+ actual power. In large samples, however, the situation
improves and it turns out that the relative error “small,” so that the given lower
bounds are “good” also in the sense (i).

The next pertinent question now under investigation is whether the proposed
test regions (5.6.2), (5.6.5) and (5.6.8) are (a) unbiased and (b) admissible
against all relevant alternatives under the respective situations.

Also under investigation is the question as to how these tests compare with
the corresponding likelihood ratio or Type II tests. On this it may be observed
here, that, except in the degenerate cases where the two methods lead to the
identical test, as, for example, the case k = 2 under (ii) where both lead to
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Hotelling’s T, the likelihood ratio tests have a far more difficult small sample
(null) distribution problem to contend with than the proposed test. This is with
regard to direct usability of the test. The small sample (nonnull) distribution
problem (connected with the question of power) would be quite difficult for both
types of test, but more so for the likelihood ratio test than for the other. This
rules out direct evaluation of power for both types of test, but, while we have
fairly good lower bounds to the power of the three different tests proposed,
we do not at the moment know of any such lower bounds to the power of the
corresponding likelihood ratio tests.
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