ABSTRACTS OF PAPERS
(Abstracts of papers presented at the Washington meeting of the Institule

April 29-May 1, 1963

1. Optimum Sample Sizes for Choosing the Largest of (k + 1) Means Using
Minimax Methods. Paur, N. SomerviLLE, University of North Carolina.

Assume we have (b + 1) normally distributed populations with unknown means aq 2
a; 2 -+ 2 ai . It is decided to choose ¥ individuals from these populations in such a way
that the expected value of their total is as large as possible. A preliminary sample of n
is taken from each population with the object of deciding from which population the fur-
ther sample of size N should be taken. N(a; — ao) is then the loss involved in-choosing the
population with parameter a; . Assume the cost of the sample is a linear function of the
sample size. Using results previously given it is shown that the minimax n is proportional
to N@® lixplicit results are given for k = 1, 2, 3, 4, 5, for a one-stage preliminary sample.
For the case k = 2, results for a two-stage sample are given. In the first stage, aamples of
n are taken for each of the three populations. In the second stage, samples of n: are taken
from each of the two populations with the largest means in the first stage. If 3n, + 2n. =
3n, then it is found that the maximum expected loss is less for the two-stage sample than
for the one-stage sample provided n;/n. is greater than .37 (approximately). The optimum
ratio in this sense is found to be n,/n. = 1.2 (approximately). If for n;/n, = 1.2, the maxi-
mum expected losses are equated by a reduction in the total preliminary sample size, a
saving of 6.6 per cent over the one-stage procedure in the preliminary sample size is effected.

2. The Correspondence Between Two Classes of Balanced Incomplete Block
Designs. W. S. ConnNoOR, National Bureau of Standards.

Let Z1(n) denote the problem of constructing the design with parameters v = {n(uz + 1),
b=3n+1)(n+2),k=mn,r=n+2 and X = 2; and let Z,(n) denote the problem of
constructing the design with parameters v = b = §(n + 1) (n + 2) +1,r = k = n + 2,
and A = 2, (n > 1). It is shown that Z;(n) has a solution only if Z:(n) has a solution.

3. A Finite Frequency Theory of Probability. A. H. CoreLAND, Sr., University
of Michigan.

This paper develops a new theory of probability, the finite frequency theory, in which
probabilities are regarded as physical hypotheses. Associated with each probability is a
gystem of predictions which can be tested by experiment. An experiment may either con-
firm or disagree with a given prediction. This theory of probability produces some com-
plications in formal logic. However the theory and its associated deductive and inductive
logics are in better agreement with modern scientific reasoning than the conventional
probability theories and the conventional logics.

4. Characterizations of Complete Classes of Tests of Some Multiparametric
Hypotheses, with Applications to Likelihood Ratio Tests. ALLaN BIRN-
BAUM, Columbia University.

Let I, be a simple hypothesis on a density function of the form
Po(e) = exp {po + Zieiti(e) + tole)).

Let T, the range of the sufficient statistic ¢ = (4, -+- , ), be independent of t. Let V'
be the class of nonrandomized decision functions &(¢) such that each §(¢) = 0 just on the
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intersection of some open convex set with 7. Let V' be the class of randomized decision
functions 3(¢) each of which coincides with a member of V" except on a set of measure zero.
Then under certain assumptions it is shown (a) that ¥’ is essentially complete, and (b)
that V is complete. Under further assumptions, chiefly requirements that the alternative
hypothesis be sufficiently general, itris shown (a) that V'’ is minimal essentially complete,
and (b) that V is minimal complete. Applications are made to likelihood ratio tests of H, ,
which are shown to be included in V”, to discrete distributions of the form p,(e), and to tests
of composite hypotheses on p,(e).

5. Confidence Regions for the Location of the Vertex in Quadratic Regression
(Preliminary Report.) Davip L. WaLLacg, Princeton University.

Procedures are considered for obtaining confidence regions for the location of the vertex
of a regressian surface which is a quadratic function of & ‘‘determining’ variables z; , --- ,
z; from a sample with normal homoscedastic error on the dependent variable only. The
hypothesis that (3, - -+ , xt) is the vertex of the regression surface is a general linear hy-
pothesis; a set of k£ linear homogeneous equations in the regression coefficients in which
the coefficients in the equations are linear functions of the {z7}. For any general linear hy-
pothesis of this form, a confidence region for (3, -+, x1) is obtained by the standard (¥)
test. This region possesses several ‘“‘optimum’ properties, but is unsatisfactory for prac-
tical applications. If each of the & single linear hypotheses making up the general linear
hypothesis is tested separately by the standard (¢) test, k different confidence regions,
whose shapes are usually hyperboloids, are obtained for the (z} , - - - , z%). The intersection
of these is a confidence region for (xf, --- , z3) with bounded risk. Approximations to this
intersection region by parallelepiped and polyhedra are discussed. Requirements for usable
confidence regions are discussed and proposed procedures are rated primarily by these re-

quirements.

6. The Noncentral Wishart Distribution. (Preliminary Report.) A. T. JamEs,
Princeton University.

The noncentral Wishart distribution, as T. W. Anderson showed, is the central dis-
tribution multiplied by a symmetric function, ¢, of the latent roots a; of the matrix

-1Tz"A

where T is the k£ X k variance covariance matrix of the parent normal k-variate distribu-
tions, T is the £ X k matrix of sums of squares and products of population means about
their averages and A is the sample variance covariance matrix. It is shown that y is the
average of an exponential function in several variables over the orthogonal group. The
exponential function is an eigen value of the Laplace operator A, and A commutes with
the operation of averaging over the group. Hence Ay = y. If A is expressed in terms of the
latent roots a; a system of second order partial differential equations for y is obtained,
which can be solved in power series for k = 3. For k > 3, the partial differential equations
vield an effective system of recurrence relations for the coefficients of the multiple power

series.

7. On Time-Dependent Waiting Line Processes. A. BRucE CLARKE, University
of Michigan.

A single-server waiting line process with Poisson distributions on the input and service
times is considered. The parameters A and u of these Poisson distributions are assumed
to be arbitrary nonnegative functions of time. An exact formula for the transition prob-
abilities, P, ,(t), for the line to have length » at time ¢, given that it had length » at time 0,
is found. The formula involves a function which is defined as the solution of a certain Vol-
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terra type integral equation; this can be determined explicitly for the special case in which
the ratio of A and x is independent of time, and numerically otherwise. The general method
of solution is to use the Kolmogorov equations to obtain a hyperbolic partial differential
equation for a modified characteristic function of the distribution, thus reducing the
problem to a boundary value problem that can be solved by standard methods. The for-
mula for P,,,(t) is used to discuss various properties of the distribution, with special atten-
tion to nonstationary processes.

8. Some Estimates Which Minimize the Least Upper Bound of a Probability
Together with the Cost of Observation. H. S. KonwnN, University of Cali-
fornia, Berkeley.

When an investigator aims primarily at insuring a high chance of getting a point estimate
Ty of an unknown parameter point 6 within a reasonable distance « of 6, the loss function
proportional to the distance d(Tx , 6), which is generally used implicitly or explicitly, is
inappropriate, and should be replaced by W = 1if d > a (or >a}indirectioni,i =1, 2, ---)
and = 0 otherwise. Somewhat similar considerations already arose in the theory of con-
fidence intervals. Following in part a procedure of Wolfowitz (Ann. Math. Stat., Vol. 21
(1950), pp. 218-230), the present paper bases the choice of estimating interval [Ry , Syl
on the probability of covering 0, Pr{d(Ry , ) > «’},and Pr{d(Sy , 8) > o”}. When the cost
of observation plays a role in the selection of estimates, it usually enters in the form of its
mathematical expectation, but other ways may be considered. The paper investigates in
detail the (highly manageable) case of a normal variate with known variance. In several
instances it obtains explicit results, which allow suggestive comparisons with classical
methods as to sample size, unbiasedness, ‘‘shortness,’”’ etc. A still different point of view
is briefly formulated.

9. On a Multivariate Analogue of Student’s t-Distribution, with Some Tables
for the Bivariate Case. CuarRLEsS W. DuNNETT AND MiLToN SoBEeL, Cor-
nell University.

We consider the joint distribution of p variates t; = z;/s,7 = 1,2, ---, p. The 2, have a

joint multivariate normal distribution with means 0, variances o2 and correlation matrix
(p:i); ns?/o? has a chi square distribution, independent of the z; , with n degrees of freedom.
The joint density function of the ¢; is given by | A !T'(n + p/2) {(nx)?*T'(n/2) 1 +
26 iaijtiti/n)(ntmi2}-1 0 where | A | is the determinant of the positive definite matrix
(a:i;) = (p:ij)7t. This reduces to the Student ¢-distribution when p = 1. For the bivariate
case (p = 2), the following results were obtained: (a) an exact expression in the form of a
finite series for the probability integral from (h, k) to («, «), (b) an asymptotic series in
powers of n~! for this probability integral, (¢) an asymptotic series in powers of n~! for the
value of b = k for which the probability integral is equal to an arbitrary specified value,
and (d) tables of the probability integral and certain percentage points for the special
cases b = k and p = 4§, where p is the correlation between z, and x; . These tables are re-
quired for certain multiple decision ranking problems involving three population means
(Ann. Math. Stat., Vol. 24 (1953), p. 136). (Research sponsored by Air Research and De-
velopment Command.)

10. On the Completeness of Classes of Bayes’ Solutions. Lucien M. LECam,
University of California, Berkeley.

The terminology used is that in Wald’s book, Statistical Decision Functions, John Wiley
#nd Sons, 1950. It is shown that assumptions (3.3) and (3.4) of the preceding book can be
replaced by the following weaker assumiptions. (1) F is a function of an element w in some
arbitrary index set . (2) The space D! of terminal decisions is a compact metrisable Haus-
dorff space. (3) The weight function W depends on w, d* and possibly on the indices of the
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random variables actually observed. Moreover, infst pta,....s W(w, df; 81, +-+ , 81) >
—». (4) For each w £ @ and each set {s;, --- , s}, the function W is lower semicontinuous
on D*. The assumption of separability (3.2) loses part of its meaning and can be dropped.
Assumptions (3.1), (3.5) and (3.6) can also be weakened but not very significantly. Under
these weakened assumptions, the class of admissible decision functions is complete and
theorems (3.5), (3.7), (3.8), (3.9), (3.17rand (3.18) remain true. In theorems (3.17) and (3.18),
the class Dy of decision procedures with bounded risk functions can be replaced by the class
D of all decision procedures.

11. Identification and Estimation of Linear Structures with Symmetric Errors.
T. A. Jegves, University of California, Berkeley.

Consider a vector random variable X with n-components having the following structure:

(i) X = ¢ + U; (ii) ¢ is a vector random variable such that Bt = A where Bisa s X n
matrix of constants and 4 is a constant vector of s components; (iii) £and U are independent
and (iv) the distribution of U is symmetric about some known point in n-dimensional space.
A necessary and sufficient condition for the identifiability of A and the column space of B
is that the distribution of # should not be symmetric about a point. An estimate based on the
sample characteristic function is given which converges almost surely when the parameters
are identifiable.

12. The Cramér-Smirnov Test in the Parametric Case. (Preliminary Report.)
DonaLp A. DaruiNG, Columbia University.

Given a set of n data (independent, identically distributed random variables)
X, X, -+, X, we wish to test the hypothesis H that their common continuous cdf is
F(z; 6) for some (unknown) value of the (real) parameter 6 ¢ 2. In modifying the usual
chi square test where an auxiliary parameter is to be estimated we consider, following a

0
suggestion of Cramér, the test function W = /7 f (Fn(z) — F(z; 8,))2dF (z; 8.) where

Fp(z) is the emplncal cdf of the data and 6, is some estimate of 8. Two essentially distinct
cases arise. a) If 8, is a superefficient estimator of § W% has the same limiting distribution as
in the nonparametric case—the Smirnov distribution. b) If F(z; 0) satisfies Cramér’s con-
ditions for regular estimation and an asymptotically efficient unbiased estimator 8, (the
maximum likelihood estimator essentially) exists we have the following result: let f =

dF /dz, 0% = limywn Var (0,.) = E{(3logf/96)?}* and put u = F(z; 6), h'(u) = o9 log f/36,

0=<u=land letag=\/'f h(u)sinmku du, k= 1,2,--- ,GQ\) = 14+ IP (\af)/(1 — N/x2k2).

Then the limiting characteristic function of W% is v/2it csc 4/2:6(G(2it))~}. The method of
proof is by a consideration of a Gaussian process following an idea of Doob. Unlike the
corresponding nonparametrlc case the test is not distribution free, and in general the limit-
ing distribution of W5 will even depend on the true value 0. In important special cases in-
cluding that where 0 is a scale or location parameter the function (), and consequently
the distribution of W% , does not depend on 8, however. The theory can be extended to the
case of several unknown parameters, and it is possible to discuss the corresponding Kolmo-
goroff test function using these methods. (Research sponsored by Air Research and Devel-
opment Command of the Air Force.)

13. Asymptotic Solutions of the Compound Problems for Two Completely Speci-
fied Populations. James F. Hannan aAnp HerBerT Rossins, Catholic
University of America and University of North Carolina.

Let v be a vector of arbitrary dimensionality and let F (v, 0) and F (v, 1) be any two dis-
tinct distribution functions. Let X , --- , X, be independent random vectors such that X,



494 ABSTRACTS

has the distribution function F(, 8,). Let X = (X1, --- , X,) and let § = (8, -+ , 6,).
It is required to decide for each 7, on the basis of X and the known distribution functions
F(v,0) and F(v, 1), whether 6, is 0 or 1. The loss of the compound decisiond = (d; , - -- , da)
is taken to be W(d, 8) = n™! Z'{ad;(1 — d;) + b(1 — 6:)d;], a and b being positive constants
determined by the empirical backgroynd of the prohlem. This prohlem was previously con-
sidered for the special case of N(—1, 1) and N (1, 1) (Herbert Robbins, ‘“‘Asymptotically
subminimax solutions of compound statistical decision problems,’’ Proceedings of the Second
Berkeley Symposium on Mathematical Statistics and Probability, University of California
Press, 1951, pp. 131-148). The present paper constitutes a generalization and amplification
of results obtained there.

14. On the Estimation of the Mean Life of a Radioactive Source. (Preliminary
Report.) Ricuarp F. Lixk, Princeton University.

Procedures are given for estimating the mean life of a radioactive source assuming:
i) the individual times at which particles disintegrate are rccorded for a time interval
(%o, T1), i) the number of particles which disintegrate in each of K nonoverlapping time
intervals is recorded. Methods for obtaining exact confidence intervals for the estimate of
the mean life are presented for two of the procedures. Asymptotic variances are derived for
all of the estimates. Comparisons of the asymptotic cficiency of the various methods are
given. For two of the methods comparisons of the expected lengths of confidence intervals
for the mean life, given that n disintegrations are observed, are presented for n = 10, 25.

15. The Use of the Questionnaire to Compare Two Populations for the Pur-
pose of Improving the Course Content in a Mathematics Course for Busi-
ness Teachers. Mary Goins, Marshall College.

A study was made to determine the relative amount and kind of mathematics required in
husiness teacher training programs in professional schools of business as compared with such
programs in teachers colleges. Random samples from the two populations were drawn.
An appropriate questionnaire was sent to the administrators of the institutions. Results
were tabulated and statistical computations made. On the average, professional collegiate
schools of business were found to have stronger required courses in mathematics than
teachers colleges having the same type of curriculum. Changes in course content based on
the computed statistics are discussed in this paper.

16. Minimax Decisions Regarding Mean of a Normal Variable with Unknown
Variance. MaNINDRA N. GHOsH, University of North Carolina.

In a recent paper by the author (Sankhya, Vol. 13) Wald’s decision problem has been
generalized to the case of unbounded weight function W(F, d*) and locally compact space
Dt of decisions. In this paper some applications of this method to the case of decisions re-
garding the mean of a normal variable, in the fixed sample or sequential procedure have been
made when the variance is unknown.

17. On Two-Stage Estimation Procedures. S. G. GHURYE AND HERBERT Ros-
BiNS, University of North Carolina and Institute for Advanced Study,

Princeton.

Let P; ,¢ = 1, 2, be two populations and let 6; be o parameter connected with P; . Let
{.(n) be statistics (of finite variance) based on samples of size n from P; and such that
8t;(n) = 0;. Samples of sizes n; from P; yield the unbiased estimate t,(n)) — ta(ne) of
0, — 0. . The total sample size N = n, + n; being prescribed, it is desired to partition N
s0 as to minimize the variance of {;(n;) — {;3(n;). When the variances of the ¢;(n) are un-
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known, a two-stage sampling procedure is utilized. Some particular investigations of such
problems have been made by others (e.g., J. Putter), but this paper considers the asymp-
totic behavior (as N — «) under general conditions, and also the situation for finite N in
special cases. (This work was supported by the U. S. Air Force under contract AF 18(600)-
83.) .

18. Estimation of the Location Parameter in the Structural Problem of Ney-
man. T. A. Jeeves, University of California, Berkeley.

Consider a pair of random variables (X, Y) having the following structure: (i) A" =
£+ U, Y =n+ V; (il) (¢ n) are random variables such that £ cos 8 + 5 sin @ = p for
certain constants § and p (—7/2 < 0 £ x/2); (iii) (U, V') are independent of (£, 3). Let
{Xn , Yn) be a sequence of random variables such that each pair has the above structure
and isindependent of every other pair. The basic problem is to use this sequence to construct
a pair of statistics Gy and py which will converge in some sense to 8 and p, respectively.
IfU=U,+4Uzand V =V, + V,with (U, , V1) jointly normal and independent of (U, V3)
and U: independent of V", , then under the assumption that £ and » are not both normal,
Neyman (“Existence of Consistent Estimates of the Directional Parameter in a Linear
Structural Relation Between Two Variables,” Ann. Math. Stat., Vol. 22 (1951), pp. 497-512)
has given a consistent estimate of 8* (8* = 9if 8 = =/2,6* = 0if § = =/2). To date no esti-
mates of p have been given. In fact, even assuming the means of (U, , V1) known, without
further restrictions on (U:, V3), p is not identifiable and hence no consistent estimate
exists. Using the sample characteristic function, estimates (fx, px) have been obtained
which converge almost surely to (8, p) under the assumption that U, and 17 have sym-
metric distributions. In a similar manner, estimates have heen obtained for the case in
which the first moments of U and Vs, exist and are known.

19. On the Distribution of the Sum of the Roots of a Determinantal Equation.
K. C. S. PrLrar, University of North Carolina.

In four different situations of testing hypotheses relating to p-variate normal popu-
lations we run into the roots (all nonnegative) of the determinantal equation in
6:] 8 — 08:| = 0 where Si(p X p), S:(p X p) are sample matrices such that almost every-
where S, is at least positive semidefinite of rank ¢ (<p) and S: — S, (and hence neces-
sarily also S.) is positive definite. Under the null hypothesis, the joint distribution of the
¢ positive roots 6; £ 6, £ --- £ 6, is well known. Starting from this distribution, the sue-
cessive moments of the sum of the ¢ roots, s , say, have been studied by means of a recur-
rence relation. The lower order moments indicate that the distribution of sy can be ap-
proximated by a Beta function of the form: const. sjim* @Dl (1 — gq4/q)aln+)a+D]=1
(0 £ s4= ¢q). For small values of ¢q the approximation is satisfactory if m + n = 30 and for
large values of % this distribution can be further approximated by a Gamma function with
qlm + 3(¢ + 1)] degrees of freedom. This result has been established in two different ways.
namely, using (1) the distribution of ss given above and (2) the method of characteristic
function on an asymptotic joint distribution of the roots. T. W. Anderson following P. 1..
Hsu has obtained the asymptotic Gamma function distribution by another method.

20. On a Problem in Multivariate Regression. THoMas S. FErGUsoN, Univer-
sity of California, Berkeley.

Consider s random variables & , -+ - , & and » + 1 random variablesng , m . - - - , 7. such
that the 7; are independent of the & and also independent among themselves, but the &,
are not, necessarily independent among themselves. We assume that the . and »; are non-

“ degencrate and that all have finite first moments which we assume to be zero. Let X'; =
kot Qptr +miforj=0.1, -+, nwhere the a;: are arbitrary constants. In the casen = 1
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the following result is obtained. Theorem 1:In order that the regression of X on X1 be a linear
Sfunction of X irrespective of thevalues of the constants a;x , it is necessary and sufficient that

the characteristic functions of n, and (& , --- , &) be of the form exp {—K |u |' } and
exp {—p"g(v1/p, - , vs/p)} respectively, where K and v are constants, K > 0,1 < v < 2,p=

i, oee, + 02, and g is an arbitrary real function such that exp {—p"g(vi/p, -+ »¥s/p)}
18 the joint characteristic function of s nondegenerate random variables with zero means. The
general result for n > 1 is Theorem 2:In order that the regression of Xoon X1, X», -+« , Xa
be linear in X1, X, , +-- , Xn irrespective of the values of the constants ajx , it is necessary
and sufficient that each n; be normal and that & , - -- . & have a multivariate normal distribu-
tion. This paper extends the results of E. Fix (““Distributions which lead to linear regres-
sions,” Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability,
University of California Press, 1949).

21. On the Problem of Construction of Orthogonal Arrays. ESTHER SEIDEN,
Universty of Chicago.

The remarks made by O. Kempthorne, (Biometrika, Vol. 34 (1947)) and K. A. Brownlee
and P. K. Loraine (‘“The relationship between finite groups and completely orthogonal
squares, cubes and hyper-cubes,’’ Biometrika, Vol. 35 (1948), pp. 277-282) regarding some of
the multifactorial designs constructed by Plackett and Burman can be extended to all of
them. In order to avoid confounding of main effects with first order interactions, only arrays
of strength at least 3 should be used. It is shown that all the designs of Plackett and Bur-
man, in which each factor takes on only two levels, form a scheme leading to the construc-
tion of orthogonal arrays of strength 3 with the maximum possible numbers of constraints.
An orthogonal array (36, 13, 3, 2) is constructed. It is known that the upper bound for the
number of constraints is in this case 16. The method of construction used could not lead
to a number of constraints greater than 13, but it is not known whether one would not do
better using another one.

22. The Joint Distribution of n Successive Amplitudes. (Preliminary Report.)
W. C. Horrman, U. S. Navy Electronics Laboratory, San Diego.

The joint probability density function for two values of the output R(¢) = {X2(t) +
Y2(t)}* of a linear detector (Lawson and Uhlenbeck, Threshold Signals, McGraw-Hill
Book Co., 1950, p. 61, equation (72)) is generalized to the case of n such random variables,
assuming a multivariate normal distribution for the input signals. The derivation depends
in an essential manner on the following properties of elements of the inverse covariance

matrix AZUNGTLIST = N2k (f, ko= 1,2, --- , n); NHTLE = —\BkL (5 £ k); NHLA =
A%.2i-1 = (), The joint probability density function for the n-dimensional case has the form
f(Tl y Tn) = | A I—;Tl y "ty Tn €Xp l_ % 2)".—1 )@i“‘l,ﬁ‘lf‘}}Q(ﬁ y "ty Tns P): where An

is the 2n X 2n covariance matrix of the input, I' is the symmetric matrix (y;z) with v =
{(\%i—1.2k=1)2 . (\2-1,28)2}} and @ is an infinite series each of whose terms consists of prod-
ucts of modified Bessel functions of the first kind multiplied by the cosine of a weighted
sum of the parameters ¢, = Arc tan (A%—1.2k/)\2i—1.2k-1) The subscripts of the Bessel func-
tions range over all nonnegative integers but must satisfy certain linear relations.

23. Simultaneous Tests for Regression Coefficients by the Two Stage Proce-
dure. (Preliminary Report.) MANINDRA NATH GHosH, University of North
Carolina.

In setting up a prediction equation of the form E(w) = « + Bz + vy + 82, the tests of
significance of the hypothesis H::8 = 0, Hzty = 0, H3:6 = 0, by the usual method are not
i’fidependent. Instead of combining these hypotheses and using an F-test, one would prefer
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to make simultaneous decisions regarding the hypothesis before setting up the final predic-
tion formula. The methods developed by Scheffé-Tukey-Bose-Roy of simultaneous confi-
dence intervals have been employed for this purpose and a two-stage procedure along the
lines of Stein (‘A two-sample test for a linear hypothesis whose power is independent of
the variance,” Ann. Math. Stat., Vol.«16 (1945), pp. 243-258) has been developed to keep
the probability of a wrong judgment regarding the hypotheses Hy: |8 | > 8o, Hy: |v | >
vo , H3: | 6| > &0, less than « per cent, where B , 7o , 8o depend upon the relative cost of
measuring the variables, and the variables z, y, z can be controlled for the purpose of the
experiment.

24. Optimum Sample Size for Choosing the Largest of (k 4+ 1) Parameters
from (k + 1) Otherwise Identically Distributed Populations. Paur N.
SoMERVILLE, University of North Carolina.

Assume we have (k 4 1) populations, identically distributed except for unknown param-
eters o= a; =, - -+ , = ax). Let it be required to take a preliminary sample of size (k + 1)n
with the object of deciding which population should be used for a further sample of size N.
Let W(a;, @) be the loss involved in choosing the population with parameter a; where
W(ai , ao) = 0, W(ao , @) = 0. Let C(n) be the cost of taking a preliminary sample. Then
it is shown that under certain conditions the maximum expected loss over all values of
a;i,i=0,1,2, --- | k, occurs where a; = as = -+ = a; . This enables us to find the maxi-
mum expected loss, which can then be minimized with respect to the preliminary sample
size. '

25. Necessary Conditions for the Existence of Partially Balanced Incomplete
Block Designs with Two Associate Classes. W. S. Connor AND W. H.
CrarworTHY, National Bureau of Standards.

For a partially balanced incomplete block design with two associate classes and with
parameters v, b, 7, k, m1 , n2 , A1, A2, and pix (3, J, k = 1, 2), the following theorem has been
proved. If (i) v > b, thenitisnecessary that (a) Abe a perfect square and (b) eitherr — r, =
0, orr — 72 = 0; (ii) » = b and v is even, then it is necessary that (a) A be a perfect square
and (b) r — ry be a perfect square when a, is odd (v = 1, 2); (iii) v = b, v is of the form
4t +3(=0,1,2, ---),and Aisnot a perfect square, then it is necessary that (r — r1) (r — 72)
be a perfect square, and (iv) » < b and v is even, then it is necessary that A be a perfect
square where 7. = $[(\ — M) (—y + (=)*v/B) + \ + M), (w = 1,2), v = plz — p2,
A=+24+28+4+1,8 = piz + plz, and @, and a: are nonnegative integers such that oy -+
az = v — 1. Examples are given of sets of parameters which fail to satisfy these conditions.

26. Estimation in Truncated Bivariate Normal Distributions. (Preliminary Re-
port.) A. C. Conen, Jr., University of Georgia.

Maximum likelihood estimators of the parameters of a bivariate normal population are
developed for-samples which are subjected to a truncation on one of the variates at known
terminals. Both single and double truncations with the number of missing (unmeasured)
observations either known or unknown are considered. Asymptotic variances of the esti-
mates are obtained from the likelihood information matrices.

27. On a Class of Optimum Linear Predictors. R. F. DrRENick AND P. NESBEDA,
R. C. A. Victor Division, Camden, New Jersey.
Prediction is the problem of projecting into the future a set of observed data in order to

“obtain an estimate for future observabh(a data. For optimum prediction one assigns, through
some considerations which are not part of the method, a loss function representing the
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penalty for error. An optimum prediction procedure is the one which minimizes, in the long
run, this penalty. N. Wiener pointed out that the optimum mean square predictor is linear
if the interference affecting the observations has Gaussian probability distribution. By
using a method of estimation due to Pitman (‘‘ISstimation of the location and scale param-
eters of a continuous population of anwgiven form,” Biometrika, Vol. 30 (1939), pp. 391~
421) the authors show that the class of linear predictors is characterized by the Gaussian
probability distribution and by a loss function more general than r.m.s., namely, one which
is symmetric and has continuous derivatives. Most of the loss functions of practical interest
are in this category. Furthermore any such loss function leads to the same linear predictor’
X, which has also the property: P(| X, — 2 | £ k) = max for all & > 0, z being the true
value. (Work sponsored by the Bureau of Aeronautics.)

28. Multiple Range Tests and the Multiple Comparisons Test. (Preliminary
Report.) D. B. Duncan, Virginia Polytechnic Institute.

Several methods are available for testing differences betweén treatments in an analysis
of variance. The two considered most satisfactory are one by Newman (1952) and Keuls
(1952) and the Multiple Comparisons Test by Duncan (1951). Both employ repeated lio-
mogeneity tests. The Newman-Keuls test is simpler because it uses repeated range tests
instead of F tests as used by the Multiple Comparisons Test. The latter is generally more
sensitive owing partly to this reason but mostly to the relaxation of the significance levels
of some of the tests considered to be of diminished importance. This paper presents: a
new Multiple Range Test which achieves the simplicity of the Newman-Keuls test by using
range tests and most of the sensitivity of the Multiple Comparisons Test by using the special
significance levels, and an improved set of application rules for the Multiple Comparisons
Test. Each of these is recommended for use depending on the relative means for simplicity
or sensitivity. The special system of significance levels is discussed in some detail. The
author is indebted to W. Beyer in the determination of significance ranges for the new test
which is still in progress. (Research under contract No. DA-36-034-ORD-1084 (RD) with
the Office of Ordnance Research, Department of the Army.)

29. A Property of the Normal Distribution Related to a Theorem of S. Bern-
stein. (Preliminary Report.) Evcene Lukacs anp Epcar P. King, Na-
tional Bureau of Standards.

The following theorem is proved. Let 2, , 2, , - -+ , . be nindependently (but not neces-
sarily identically) distributed random variables and assume that the nth moment of each
z; (1 =1,2, --- , n) exists. The necessary and sufficient conditions for the existence of two
statistically independent linear forms y;, = 2., a,x, and y» = Zi. byxsfa, %= 0; by = 0;
as/bs # ai/byfors = t;s,t = 1,2, --- , n] are that each random variable be normally dis-
tributed and that 2 as;b0: = 0. For n = 2 this reduces to a theorem of S. Bernstein
(“‘Sur une propriété caractéristique de la loi de Gauss,”” Trans. Leningrad Polytechnic
Institute, (1941), pp. 21-22).

30. An Asymptotically Efficient Formula for Estimating Parameters from
Grouped Data. (Preliminary Report.) M. C. K. TwrEDIE, Virginia Poly-
technic Institute.

Suppose that, in a sample from a discrete or grouped distribution, z; observations fall
in group 4, whose probability is =(81, --+ 6g), with 7 = 1 to N. The total sample size is
n, = Z¥, (z:), and may be constant or determined sequentially. Write G = I, z.g(X.).
where X; = nw;(T1, - Tr)/z: and g(X) is an arbitrary function of X approximately
quadratic near X = 1. An estimate of (8, , --- , 6z) may be obtained (usually by differentia-
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tion) as theset of values of (T , --- , Tg) for which G is least (or greatest, depending on g¢).
Under normal conditions of regularity, with large samples the consequent estimates are
effectively consistent and have minimum variance, and are, in Neyman’s terminology,
BAN. (Cf. also H. Cramér Mathematical Methods of Slalistics, Princeton University Press

1946, §30.3). This formulation includes, some important methods precisely, such as maxi

mum likelihood [g(X) = log X] and minimum x2? [g(X) = (1 — X)2/X|. Thus, as Fisher
(Statistical Methods for Research Workers, Chapter IX) has shown, the recombination frae

tion can be estimated efficiently from F, genetical data by both these methods, and also by
a product-ratio formula (given by g(X) = X log X). In this problem an efficient linear es-
timation equation results from using g(X) = (1 — X)?, equivalent to minimizing a modifica-
tion of x2 which has the observed frequencies in the denominators.



