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A NOTE ON DODGE’S CONTINUOUS INSPECTION PLAN!

By GERALD J. LIEBERMAN
Stanford ‘ Unaversily
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1. Summary. In his first continuous sampling plan [1], H. F. Dodge showed
that his procedure guarantees an Average Outgoing Quality Limit (AOQL) with
the assumption that the process is in a state of statistical control. It is proved
in this paper that the Dodge procedure, without the assumption of control,
guarantees an AOQL, although different.from that specified by Dodge.

2. Introduction. In 1943, Dodge published a continuous sampling plan [1]
in the Annals of Mathematical Slatistics. The procedure, as stated by Dodge,
is as follows: .

“(a) At the outset, inspect 100 per cent of the units consecutively as produced
and continue such inspection until ¢ units in succession are found clear of defects.

“(b) When ¢ units in succession are found clear of defects, discontinue 100
per cent inspection, and inspect only a fraction 1/k of the units, selecting indi-
vidual sample units one at a time from the flow of product, in such a manner as
to assure an unbiased sample.

“(c) If a sample unit is found defective, revert immediately to a 100 per cent
inspection of succeeding units and continue until again ¢ units in succession are
found clear of defects, as in paragraph (a).

“(d) Correct or replace with good units all defective units found.”

In his paper, Dodge studied the properties of this plan, and presented equations
and charts for determining the Average Outgoing Quality Limit (AOQL) as
functions of the parameters k& and 7, under the assumption that the process is in
a state of statistical control. A production process is said to be in statistical con-
trol if there is a positive constant p < 1 such that, for every item produced, the
probability that it is defective is p, and is independent of the state (defective
or nondefective) of all the other items produced.

The purpose of this paper is to show that the Dodge procedure guarantees
an AOQL whether or not the process is in a state of statistical control. It is
proved, without the assumption of control, that for a given % and 7, an AOQL
is guaranteed. In fact, AOQL = (k — 1)/k + 7).

For a given k and 7, the above value of the AOQL is always higher than that
obtained with Dodge’s equations. However, it is achieved when the process
alternates between producing all defective items during partial inspection and
producing all nondefective items during 100 per cent inspection. As Dodge points
out, [4], this worst possible behavior for the process is not a realistic model. The
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results, therefore, should not be interpreted as implying the existence of practical
limitations in the use of the plan as Dodge recommends; especially since the
AOQL is itself an upper bound, and the actual outgoing quality is usually smaller.

It is assumed throughout the paper, that observations are drawn at random,
and each defective item found is replaced by a nondefective. The definition of
the AOQL given in Section 3 is consistent with that given by Wald and Wolfowitz
[2], and consequently many of the comments presented in their section on Funda-
mental Notions (pp. 30-32) are pertinent to this paper.

3. Method of proof. Define
v; = number of defects being passed in the jtheycle (j = 1,2, --- , m). A
cycle is the period where partial inspection begins, to the time a defec-
tive is observed.

k = an integer such that when the process is on partial inspection, one out of
k items is inspected.
1 = number of consecutive items free from defectives before partial inspection

can begin. ‘
T; = number of items undergoing 100 per cent inspection from the end of the
(7 — 1)st cycle until 7 consecutive items are observed free from defects;
and such that T'; + ¢ is the total number of items being inspected 100
per cent from the end of the (j— 1)st cycle to the beginning of the jth
cycle. T'; = 0.
N; = number of groups of k items on partial inspection in the jth cycle. N; = 1.
Define AOQL = smallest number L with the property that for every process
the probability is zero that

Z; v; 2 v;/m
(1)  lim sup — st = lim sup

J==l
moe Z; (Ti+i+kN) ™ Z:. (T; + i + kN;)/m
== Jo)

> L.

To obtain the AOQL it is evidently sufficient to consider the special class of
processes where the number of defectives in every segment on partial inspection
=1.8Since N; = 1, T; = 0, we have for any such process

Z v;/m Z v;/m
(2) lim sup — =1 < lim = k.
| o Z; (T + i+ kNy/m "7 ° +
Jaa]

(We shall show that the limit on the right-hand side exists and is equal to k — 1

with probability one.)
It is important to note that the random variables v, are dependent. However,

if it can be shown that
E(v,-lv;, s ,1),'_1) =k — 1

0 2

Z E(v] I U1 )j2 ) v]—l) < w0
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the Strong Law of Large Numbers [5] can be applied to the numerator of the
right-hand side of the inequality of (2) and we then obtain

E—1
(3 < .
® AOQL = 27

In fact, if the process is such that the proportion of defective items is zero
whenever items are on complete inspection, and the proportion of defective items
is 1 whenever items are on partial inspection, then

m

2 vi/m k-1
k+1i

. =1
lim sup — d =

T (T5 i+ kN /m s

j=1

Hence it follows that AOQL = (¢ — 1)/(k + 7).

4. A lemma on the boundedness of E(v} | nj;, njs, -+ ). Let n;; be the num-
ber of defectives in the sth group of k items after the start of the jth cycle, 1 =
1,2, -+ . By definition of the expected value of a discrete random variable

nj1

705 | mj1, Ry -+ 0) = %(nn -1 +( - 1;—)%-2(1?,1 + njpe — 1)

The sth term of the right-hand side of equation (4) is bounded by
(1 — 1/k)* ™" (sk)" so that

4)

(5) E(v;-]nj,,nn, ) < z; (1 -_ l/k)‘_l (Sk)r.
For any finite r, the right-hand side of inequality (5) is finite and independent
of the n;; .

6. Theorems and proofs.
THEOREM 1.

Ew;j|v, - ,vj) =k — 1.
Proor. Define
E(v; | nj1, nya, -+ -) = o1, nja, + )

(6) (p(njl,nj2,"' =%—l(nn—1)+< _%)[njl'i“P(nj%ynjél"")L
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Using the recursion formula a finite number of times, it follows that

2= (1- Do -3+ (- ) (12
o (D) (-2
=)= (-2

Let p approach infinity in equation (7). From the results of Section 4
ga(n,-; y MjG41y, *° ') is bounded for all 7. AISO,

lim< "")( ”’2 .. ( —-7-;:—">=Osothat
p—0
o(nj1, nyz, =) = (1 - %) [nil + (1 - T)'n:?
+(, —%)(1—%)ma+

Dividing ¢(n;1, nj2, +-+) by k — 1 in equation (8)

¢(nj1,nj2,"')_@ _ M1\ Ry
k=1 “k+(1 k)k

H(-2)( -

From probabilistic considerations, the right-hand side of (9) sums to 1, since it
is just the probability of obtaining one defective item in the jth cycle, which is
1. Consequently,

(10) e(mj1,nje, +++) = E(;| nj1,nj, ) =k—1

®)

©)

The proof of the theorem follows from the identity

(1) E(;|v, -+ ,via) = E[E{v;|v1, -, v ;n0,n50) o, -+, va].

But the probability distribution of v; | v, -++ , vj_1, nj1, Rj2, - - - is a function
only of nj; , njz, ---. Hence
(12) Efvj|vi,ve, -+ ,0ja,m,05, -} = E{v;[njp,ne, -} =k —1

so that E(v; |1, -+ ,v;m1) = k — 1, and the theorem is proved.
THEOREM 2.

ZE(vllvl"" 7”1'—1)

j=1 72

< o,
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Proor. Letting r = 2 in equation (5), it follows that E(v} | nj1, njz, -+ ) <
2k* — k*. Once again, using the identity

E@ v, -+, 05) = EEBW [v, 0, o 00, m, o} [on, oo, 0]
and the fact that the probability distribution of o5 | w1, «++ , vjc1, 7,1, Rja - - -
is a function only of nj , nj, - -+ , it follows that
(13) EW v, -+ ,05m) < 2K — k.

Consequently

S ESIn,e ,

i=1 i
and the theorem is proved.
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ON THE POWER OF A ONE-SIDED TEST OF FIT FOR
CONTINUOUS PROBABILITY FUNCTIONS!

By Z. W. BirNBAUM
University of Washington and Stanford University

Summary. If F(z) is a continuous distribution function of a random variable
X, and F,(z) the empirical distribution function determined by a sample X,
X., --+, Xa, then the probability Pr {F(z) £ Fa(x) + € for all z} is known
[1] to be a function P.(e), independent of F(x). A closed expression for P,(e)
and a table of some of its values were presented in [2]. In the present paper
P.(¢) is used to test a hypothesis F(z) = H(x) against an alternative F(x) =
G(z). The power of this test is studied and sharp upper and lower bounds for
it are obtained for alternatives such that SuUp_.<s<+e{H (@) — G(z)} = 8, with
preassigned 8. The results of [2] are assumed known.
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