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1, Summary. Consider any distribution f(z) with standard deviation ¢ and
let z; , 2 - - - z, denote the order statistics in a sample of size n from f(z). Further
let w, = z, — x; denote the sample range. Universal upper and lower bounds
are derived for the ratio E(w,)/s for any f(x) for which ac < z < bs, where a
and b are given constants. Universal upper bounds are given for E(x,)/c for
the case — © < z < . The upper bounds are obtained by adopting procedures
of the calculus of variation on lines similar to those used by Plackett [3] and
Moriguti [4]. The lower bounds are attained by singular distributions and require
the use of special arguments.

2. Introduction. The use of range or mean range in the estimation of ¢ has
received considerable attention in industrial quality control as well as more
recently in techniques of short-cut analysis of variance. Like many alternative
methods of estimation the procedure assumes that the basic distribution of the
data is normal. In this case the relation E(w,) = d.c holds, where d, is a well
known constant, first tabulated by Tippett [1]. Thus an observed range w, can
be converted into an unbiased estimator of ¢ by ¢ = w,/d, .

It is of interest to consider to what extent this estimator is biased if the basic
distribution is not normal. Now the general formula for E(w,) in any population
with cumulative distribution function' P(z) is given (see [1]) by

) Blun) = n (PP — (1 — Py P,

E. S. Pearson (see e.g. [2]) has studied empirically the effect of nonnormality in
P(z) on E(w,)/c for a variety of Pearson Type distributions, and found this
ratio to be very stable. Taken in conjunction with (1) this suggests the possi-
bility of establishing universal upper and lower bounds for E(w,)/s on lines
similar to the well known Tchebycheff inequalities for moments. This problem
has already been considered by Plackett [3] and, in greater detail, by Moriguti
[4] for the equivalent case of the extreme value in a symmetrical population.

Received 1/27/53, revised 9/30/53.
1 Although this is unnecessarily restrictive it is convenient to assume that P(z) is piece-
wise differentiable.
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86 H. O. HARTLEY AND H. A. DAVID

Upper bounds have been tabulated by these two authors and are shown to be
attained for the c.d.f. P(z) of which the inverse function z(P) is given by

@n — 1)}

a(P) = [P - (1 - P,
@ {2 [1 - ‘2‘”_—2]
=

However, there is no lower bound (other than zero) since E(w,)/s can be made
arbitrarily small for certain universes.

From the point of view of practical applications this last defect is particularly
disappointing as we often have to deal with data which are clearly not normal
whilst no definite alternate distribution is known. In such situations one is,
however, often able to assume that the data may be graduated by a finite range
distribution (not extending beyond the range ac < x =< be) without making any
Sfurther assumptions as to the shape of the distribution.

It is remarkable that if the above very wide assumption is made about P(x)
it is, in fact, possible to derive lower bounds for E(w,)/s which are well above
zero and in certain cases fairly near the upper bounds.

To fix the ideas we assume that E(x) = 0 and ¢ = 1 and then proceed to
consider distributions for which it is known that —X < z =< X. If the range of
zisa < x < b, that is, is asymmetrically placed about the mean or origin, X has
to be taken as max (—a, b). In this case the upper and lower bounds are not
necessarily attained. )

Before discussing the problem arising when z is restricted we shall derive the
maximum of E(z,) in the unrestrained case, abandoning the condition of sym-
metry in the parental population imposed by Moriguti. An upper bound for
E(x,) (m = 1,2, ---, n) will also be given.

3. Upper bound of the expectation of x, . We consider first the extreme z, .

1
3) E(w) =n [ x(P)P™ dP.
v0
This is to be maximized for functions z(P) subject to
1 1
@ [2dP=0 and [ #dP =1
Jo Jo
From the calculus of variations we find the stationary solution
; 1/(n—1) — 1)
G Pe=(2EHTT, @D cen-

where a = (n — 1)/(2n — 1)}, and
(6) E(z.) = 7&2:___:1_1)* fo 1 PP — 1) dP = (n — 1)/(@2n — 1)¥?

It will now be shown that (6) gives in fact the upper bound of E(z,) and that
this is attained for the distribution of (5).

2 The details of this derivation are omitted since they are given in the preceding paper.
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By Schwarz’s inequality we have

| L (:c + ‘11) dP = {( [ | (P dP)( | 1 (:o + 21;>= dP>}}.

Hence
1 n? 1\

E(xn) + E = {Qn ~1 (1 + &'2)}

or
2n — 1)} n?
E(z.) + n—1 T (n—1)2n— 1)}

that is,
Gp) E(z.) £ (n — 1)/@n — 1)},

equality occurring for (5). This upper bound of E(x,) is tabulated in Table 1
and may be compared with Moriguti’s upper bound applicable to symmetrical
populations only.

Precisely as above it can be shown that

B@m — 1, 2n —2m + 1) }
| E(xm) | < ( Blm, n—m+ P - 1) °
TABLE 1
Sample Upper bound of E(x.)

Cymmatrica U poputabons
2 0.5774 0.5774
3 0.8660 0.8944
4 1.0420 1.1339
5 1.1701 1.3333
6 1.2767 1.5076
7 1.3721 1.6641
8 1.4604 1.8074
9 1.5434 1.9403

10 1.6222 2.0647
11 1.6974 2.1822

12 1.7693 2.2937
13 1.8385 2.4000
14 19052 2.5019
15 1.9696 2.5997
16 2.0320 2.6941
17 2.0926 2.7852
18 2.1514 2.8735
19 2.2087 2.9592

20 2.2645 3.0424
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However, this upper bound can be attained by a probability distribution only
if m = n (or m = 1), as the stationary solution is

1
* B(my n—m+1)

and this expression for z is monotonic only if m = n or m = 1.

4. Upper bound of E(w,) for —X < z < X. When introducing the finite
variate range —X < z < X we stated that this restriction raised the lower
bound of E(w,). The restraint may, however, also cause a reduction of the “free”
upper bound of W, = E(w,) found by Plackett and Moriguti. Since Moriguti
confines himself to finding the upper bound for symmetrical distributions we
first show that his solution applies generally and provides the maximum ratio
of mean range to standard deviation in the competitor class of unrestrained z(P).
To show this let us start with a general z(P) and write y(p) = z(p + 1) which
we split into a symmetrical and anti-symmetrical part by setting y(p) = o(p) +
e(p) where o(—p) = —o(p) and e(—p) = e(p). Now (p + )" — (3 — p)*™*
is clearly odd in p. Hence W, is unchanged if y(p) is replaced by o(p), but

]
How) = [ a) ap

z P71 -P)" " -1

_‘['H 2()d -‘[‘l'iz()d Sf-H 2()d -1
=/, v@d -] Pdps | s@dp =1

Hence W.,/c is increased by the removal of e(p). Finally “scaling up”’ o(p), that
is, introducing co(p) so as to satisfy o*{co(p)} = 1 we have

Walco(p)} = W, {o(p)} = Waly(p)}

which shows that, in finding the maximum of W given ¢ = 1 we may confine
ourselves to symmetrical distributions, that is, odd y(p) = «(3 + p). This
maximum is attained for the finite range distribution (2) for which we have

(2n — 1)t ,

T TR/

say. It follows that if we seek a maximum under the restraint that | z(P) | < X,
the solution is still given by (2) provided X = X, while for X < X, the restrained
maximum will:be reduced. The critical quantity X, is tabulated below:

n 2 3 4 5 6 7 8 9 10
X, | 1.732) 1.732| 1.919| 2.137| 2.350| 2.551| 2.739| 2.916| 3.082

n | 11| 12| 13| 14| 15| 16| 17| 18| 19| 2
X, | 3.240| 3.391| 3.535| 3.674 3.808| 3.937| 4.062 4.183| 4.301| 4.416
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We proceed to find the maximum when | 2(P) | £ X < X, . The solution z,(P)
(say) suggested by the calculus of variation is now

axo(P) = n(P"' - Q™) forPL<P<1-P
(8) 2(P) = =X for P < P,

2o(P) = X forl — P, < P.

where P is related to the constant a, > 0 by
9) @.X = n(—=P{™ + (1 — P)™™).

a is determined to satisfy ¢°(z)) = 1, and Q = 1 — P. To prove that this solu-
tion 20(P) does in fact yield a maximum we denote by x:(P) any other competitor
function satisfying the conditions ¢*(z;) = 1 and | z; | £ X and write with ob-
vious notation:

L Wale) — Walel = [ 0~ )@ = @ aP = Loy [ 6 - oy ap

= fol (z1 — :II:(»)(P"-'l - Qﬂ_l - 7%) aP —§-f (21 — xo) dpP

Py
=] @+x (P"“ -4 "Ln}.f) dP
n—1 n—1 axX ax ! 2
+ _P!(xl—X)(P - @ —T>dP—§;—L/0 (1 — m0)° dP

in virtue of (8).
But clearly

P — Q"'+ axX/n < Oand 2, 2 —X for P £ P,
and
P — Q"' —axX/n20andz, < X forP=1-— P,

50 that wa(21) < wa(xo). To evaluate the maximum of W, when X < X, we note
from (1), (8) and (9)

fl_Pl n n—1 7—142 n n
W,=n — (P = Q") dP +2X(1 — P! — (1 — P)")
P ax

(10) = ‘ZnXl{(l = P)"7 = P — (2Lipy(n, ) — 1)/ (2:: _ 9}

(2n — 1)((1 — Py — Pr)
+2X(1 - (1 - P)" - P7).

Here P, is given by the condition

(1) | " S(P) aP = 3
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that is, from the equation
X2
- @n -1 =P) = Pr7Y)

{(1 — Py — P! — @6p,(n,m) — 1) / (2: ~ f)} +PX =1

From (10) we therefore obtain as the upper bound
(13) W.=nl — 2P X1 — P)" — PP™)/X +2X(1 — (1 = P)"—PD)
where P; is the root of (12).

6. Lower bound of E(w,) for — X < z =< X. Reverting to the probability
integral P(x) in place of its inverse z(P) we turn now to the problem of mini-

(12)

mizing .
(14) W{P} = [x (1 —P" — Q" dz
X

subject to

(15) u=X—_[xP(x)dx=0
X

(16) =X —2 [’ oP(z) do = 1
X

and

a7) - X<z=X.

Without loss of generality we may confine ourselves to step-functions of
(say) m “internal”’ steps, namely

P(x) =0 2=
(18) P($)=P. z; < T < ZTip (1:-'—"1,2"'7!,)
P(x) =1 T2 Tmp

where 0 < P; < --- < P, < 1; for by the Euler-Maclaurin theorem we can’
with any accuracy desired, approximate to the integrals (14), (15) and (16) by
step-functions, provided m is taken sufficiently large. Hence the lower bound of
W given by (14) may be determined for the step-functions (18).

Lemma A. For any m-step-function P(x) (see (18)) with m = 3, satisfying
(15), (16) and (17), a new step-function P*(x) also satisfying (15), (16) and
(17) can be found for which the number of steps is reduced by at least one and
W{P*} = W{P}.

Proor. Keeping the x; unchanged we define P* as follows:

{P*:P.--;-A;!‘ i=1,23

19)
(. P* = P; t>3
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where the AT will be determined in the form A¥ = pA; with the common scale-
factor, p, being subsequently chosen.
In order that P* should satisfy (15) and (16) we have
3
D M@ — ) = 0
=1
(20) 3
Zl Ai(ata — x3) = 0.
Condition (17) is automatically satisfied.
From (18) we have
(1) W{P} = 3701 (1 — P! — Q) (@is1 — )
and hence, using Taylor’s expansion up to the second~order term, that
W{P*} — W{P} = —n) ii (P} — QI D (@iy1 — x:)AT
—in(n — D[P + AN + Qi — $:AD) " | (@ipa — z;)AY
where 0 < ¥; < 1. Consider now the 3 X 3 matrix

(22)

Ziy1 — i '
M = T — 3 1 with columns 7 = 1,2, 3.
(P?n1 —‘Q?"’)(xm - xi)

Let r denote the rank of M. We distinguish two cases: (a) » < 3. In this case
we can satisfy the equations (20) as well as

(23) nZL; P?_l -_ ?~1)($¢+1 - xi)A.; =0

by a set of A; with D_Af > 0. Clearly the set pA; also satisfies (20) and (23). For
sufficiently small p we obviously have

(24) O0<Pi+poA<- - <P+pA3<P< - <P, <1

Now if we increase p continuously, a point is reached, when one (or more) of the
inequality signs of (24) is changed into an equality sign. Taking this value for
p we have correspondingly a P* of at most (m — 1) steps. Further, from (22)
and (23)

(25) | W{P*} < W{P}.
(b) r = 3. This allows us to satisfy (20) and
nY i (PF7 — QP D (@izs — 2:)A; = 1
with a set of A;, not all zero, so that the set AT = pA;(p > 0) satisfies (20) and
- (26) nY i (PP — QI N (i1 — x)AT = p.
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We again choose p as in (a) to obtain P* and in virtue of (22) and (26) reach the

required result (25).
So far we have shown that the minimum of W(P) can be determined by re-
stricting P(x) to step-functions of at most m = 2 internal steps. Writing

(27) p1=P1, p2’=P2—P1, p3=1—Pz

we now prove a further lemma.
Lemma B. W cannot attain its minimum for a set of z: , p; (¢ = 1, 2, 3) satisfying

(28) —X<m<m<n<X
and
(29) p: > 0.

Proor. In terms of p; conditions (15) and (16) become
(30) H = E?=1 DT = 0
31) o = Z?_; p;x% = 1.
Keeping p; constant we alter z; to zF by
(32) xf =z + pAz; .

The Az; will be determined to satisfy, in the first instance, the conditions
(33) u{P*} = 0, *{P*} > 1and W{P*} = W(P}
namely,

2pibz; = 0

(33_’) Zp;x;Ax; =4
(1 —Pf — Q)(Az: — Azy) + (1 — P73 — QF)(Axs — Axy) =0
where § will be specified forthwith. If for the rank r of the matrix of equations

(33’) we have r < 3 we solve for 8 = 0, if r = 3 we solve for § = 1. In either
case > Az > 0. For sufficiently small p we have, by (28)

'—X<x1+pA$1<x2+Psz<x3+pra<X

and as before choose the smallest p > 0 which converts at least one of the in-
equalities into an equality.
Since
(P*} = o(P} + 20 + o Lpida}
and all p; > 0 we have ¢’{P*} > ¢*{P} = 1 so that conditions (33) are satisfied.
We now need merely introduce a new distribution P’ which takes the discrete
frequencies p; at the x— values

z; = 2t /o {P*)



MEAN RANGE 93

and see at once that
p{P'} =0, o{P'} =1, and W{P'} < W{P}
which proves Lemma B.
Completion of the solution. Froh Lemma B it follows that the minimum can
occur only for the following sets of p; and z::

(a) One of the p; is zero. This corresponds to a two-point distribution and
includes the cases #; = z» or 22 = 3.

(b) i >0 (G=123)
and
@) —X<n<r<zm=X
or .
(ii) X=n<n<zn<X
(c) pi >0 z=123)
and

X =n<n<lzn=X

We proceed to rule out (b) and (c). First consider (b) where we may confine
ourselves to (i).

Suppose that the minimum did occur for a set of z:, p: satisfying (b), then
clearly this set would have to satisfy the necessary conditions resulting from
Lagrange’s method of undetermined multipliers for the ‘‘free’ variables z:,
3, 1, P2, Ps With side conditions ¢ = 1, p = 0, D_p; = 1. It will be shown
that a set satisfying these equations can not provide a minimum. We may write
W(P) as

(34) W = Ai(@s — z1) + As(xs — 12)

(where A; = 1 — pj — (1 — p;)"j = 1, 3) and the variables are subject to the
side conditions

(35) Spi=1 2pa:i=0, Dpai=1

and

(36) 0<p: <1, X<u<n<zn=X

It follows from partial differentiation with respect to 21, 22, p1, P2, ps that
37 apity + Bpr — Ay =0

(38) aps®s + Bp2 + 41 — As =0

(39) oxi + Bz + v + (@2 — )41 = 0

(40) axs + Bz + v =0

1) Yoo} + Bz + v + (@ — 2943 = 0,
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a, B, v being Lagrangean multipliers. From (39) minus (40) we find

(42) la(m + 2) + B — 41 =0,
from (40) minus (41) we find

(43) la(m + 23) + B + A3 = 0,

from (42) minus (43) we find

(44) la(m — 75) = A1 + A,

from (37) and (38) we find

(45) a(r1 — 22) pip2 = p2ds — pi(4s — 4y),
from (37) and (38) we find

(46) Yoz + 2) + B = §l41/m — (41 — 44)/p3),

from (44 and (45) we find

T2 — 21 = pl(Al - As) + pZAl
T3 — %1 21711)2(1‘1; + A;)

say, from (42) and (46) we find
(48) (41 — A3)/p2 = (41 — 2p:41)/ .
Now,if ¢g; =1 — pj,

A+ As =@ —pi 7 @ = i)

(47) = Q’

=np+p)" " =03+ i+ )" — 1> 0.

Hence from (44) we have a < 0.

The matrix of second-order partial differential coefficients corresponding to

equations (37) to (41) is

(2 — 2)AT 0 0 azy + 8 — A1 Aj
0 0 0 0 az: + B
(49) 0 0 (s — 2) A% 0 —4;
az + B — Ai 0 0 ap 0
A; az: + B —4; 0 aps

It is sufficient to show that for certain z; , 2s , p1 , P2 , Ps satisfying the side-condi-
tions (35) and (36) there results a value of W smaller than that computed from
the above stationary solution. We keep z» constant and vary x; by an amount
Az, . The second-order term of the Taylor expansion in the neighbourhood of

stationary W is

(50) I = (22 — 2)AT(Apy): + (25 — %) A5 (Aps)’ + api(Az:)’

+ 2(az1 + B — A1) Ap1AT .
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Now from (35) we have
P = (1 + 2:25)/[(22 — m1) (@2 — 21)]
(51) P = (1 + 2s21)/[(@s — ) (21 — )]
ps = (1 + &12)/[(21 — 73) (22 — 25)].

It follows that
o 1 1
52 b o
(52) 0z P (xs - + Ty — x1>
and
) o (=) pe
1 X3 — T2 \T3 — 11 X3 = T2

The last term of (50) can be rewritten from (37), (48) and (52) as

2

D1 D1
_ A1 Al - A3 1 1 2
= (— + = )(x + — xl) 2GYN)

Y4 23 3 — X1 T2

neglecting differentials of higher than the second order.
In this way it can be shown that I < 0 if

(54) AT | (1 4+ @%/Q + | A7 | Q/(1 — Q) > 2(A1 + 43)/p: .

This inequality, a sufficient condition for ruling out the stationary solution as a
minimum, is easily proved for n» = 2 or 3. For in that case we have A = npg and
hence from (47)

Q = [Ay/p;1 + (41 — A3)/pal/[2(41 + A3)]
= (g + ;1 — p)/20(1 — 2p1 + 1 — 2py)] = (1 — ps)/(4p2).
Also from (48)

n(p — p) = n(l — p1) — 2n(1 — 2p,)

that is,
‘ 2pp+ps =1
so that p, = p» = p (say), ps = 1 — 2pand Q = 3.
Thus in (54)

LHS. = 2n(g + 1) > 4n = RHS.

For n > 3 it became necessary to establish by numerical evaluation that the
value of W computed from the stationary solution is always larger than that
‘computed from the two-point distribution of (a). The procedure used was as
follows.
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A representative range of values of p;, was chosen, and the corresponding ps
calculated from(48), which with p, = 1 — p; — p; is a relation between p,
and ps . Next, @ was found from (47) and then W and X, which could now be
determined by (35); for

W/(xs — 21) = 4:Q + 4:(1 — Q)
o/ (@ — @) = 1/(zs — 1) = [p:Q" + ps — (p:Q + pa)’T
whence
W =[4Q + 4:(1 — Q" + ps — (Q + p)I™"
Also
X =(1—p— pQIpQ + ps — (2Q + )T

In this way corresponding values of X and W were built up, and it was easily
seen that the value of W obtained from this stationary solution lay well above
that calculated from the two-point solution (a) which is further discussed below.
Attention was focused on the range » = 4 to 20, but the tables so obtained in-
dicated that the two-point solution leads to the smaller W for all X and n.

It remains to eliminate case (c). This follows readily from the above approach.
Thus, setting up equations of the type (37) to (41) we reach analogously to (48)

(55) A;(l - 2p) — A;(l — 2ps) + 2(4; — 45) =0

or F(p) — F(ps) = 0, where F(p) = A’(1 — 2p) + 24. But F'(p) =
A"(1—=2p) < 0for0 < p < } and clearly 0 < p;, ps < %. Hence equation
(55) can be satisfied only if p1 = p; = p, say. This makes 2, = 0 and in this case
the second-order term of the Taylor expansion corresponding to (50) is easily
shown to be negative. Thus the only stationary solution possible in case (c) is in
fact a maximum.

Properties of the Solution. We may therefore evaluate the minimum under
condition (a), that is we confine ourselves to two point distributions with proba-
bilities p and ¢ at ; < 0 and z; > 0 respectively. Without loss of generality we
assume —2; < % . Instead of finding the minimum of W/¢ under the condition
z; £ X we may determine the minimum for given x, and then consider it over
the range 1 £ xz; = X. But for any fixed x. the conditions p + ¢ = 1,
pxy + gr2 = 0, pr; + gz7 = 1 determine p, ¢ and 2; uniquely, in fact

(56) p = z/(1 + a3)
and, with this value of p, the mean range W is given by
(57) W=(@0-p"-q¢Vpe

Thus, introducing the functions G.(p) = (1 — p" — ¢")/V/pg and p () =
z3/(1 + 23), the mean range W is given by W = G,(p(z»)). In order to obtain
tHe lower bound for the mean range E(w,) we must determine the minimum of
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G.(p(x2)) over the range 1 < x» < X. Now it is shown below that the minimum
value of G.(p(x;)) must occur at one of the end points of the z;— range that is,
either for z; = 1 or for ; = X so that we have the final result

@) =21 — B
G.(p(X)) = (1 — p" — ¢")/Vpg

where p = X*/(1 + X and ¢ =1 — p.
This is shown in Table 2 for n = 2 (2) 20.

In the case of variate range a < z < b we may still use the lower bound (58)
with X = max(|e|, |b]|). Since for the two point solution 2, = —1/x,, this
involves no loss in the sharpness of the lower bound obtained unless
min(|a|,|b]|) < 1/X. However, this situation of.extreme skewness is clearly
rare and it does not seem worth-while to consider it further.

It remains to show that for the range 1 < 2, < X, the function G.(p(z.))
takes its minima at either 2, = 1 or at 2z, = X. Since p(x.) is monotonic it suffices

(58) Wlower bound = min {

TABLE 2
Table of the lower bound of E(w,) given that — X =z £ X
X n=2 4 6 8 10 12
1 1.000 1.750 1.938* 1.984 1.996 1.999
2 .800 1.472 1.844% 1.9847 1.996 1.999
3 .600 1.146 1.562 1.898% 1.996% 1.999
4 .485 915 1.296 1.633 1.932% 1.999§
5 .392 .755 1.090 1.400 1.687 1.952§
*1.938 is to be used for 1 £ X =< 1.20 for larger X interpolate in Table 2.
1 1.984 is to be used for 1 < X =< 2.64 for larger X interpolate in Table 2.
1 1.996 is to be used for 1 < X =< 3.76 for larger X interpolate in Table 2.
§ 1.999 is to be used for 1 £ X < 4.82 for larger X interpolate in Table 2.
X2
p = X—zﬁ X= n=12 14 16 18 20
.95 4.36 1.999* 2.000 2.000 2.000 2.000
.96 4.90 | 1.976* 2.000 2.000 2.000 2.000
.97 :5.69 1.795 2.000% 2.000% 2.000 2.000
.98 7.00 | 1.538 1.7607 1.973% 2.000§ 2.000**
.99 9.95 1.142 1.320 1.494 1.664§ 1.831**
*1.999 is to be used for 1 £ X < 4.82 for larger X interpolate in Table 2.
t2.000 is to be used for 1 < X =< 5.84 for larger X interpolate in Table 2.
12.000 is to be used for 1 < X < 6.86 for larger X interpolate in Table 2.
§2.000 is to be used for 1 < X = 7.89 for larger X interpolate in Table 2.
.. **2.000 is to be used for 1 £ X =< 8.90 for larger X interpolate in Table 2.
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to show that G.(p) can not have a local minimum in the range $ < p < 1. Sup-
pose, then, that G,.(p) had a local minimum at p = py, say, with § < p; < 1.
Then the necessary conditions Go(p;) = 0 and Gn(p1) = 0 would have to be
satisfied where the dash denotes differentiation with regard to p. Introducing the
function A(p) =1 — p" — ¢" we have withg: = 1 — p;

(59) 0 = Go(p) = {pad’ — ¥ — P4}/ (pg)™”

where A and its derivative 4’(p) = —n(p™™" — ¢") are taken at argument
p1 . From (59) we obtain

(60) (@ — P4 = 2p g4’

and it is immediately clear that for n = 2 (1) 5 equation (60) can not be satisfied
for any p: between % and 1. For when substituting the expressions for A and A’
we find

t—1 n—1—i

(61) 1—p! —qf =2np(pi™ — ™)/ (01 — @) = 2P 215 P 0h

or

n—1 i . n—1 ;n—i
© 1-pf—a -5 ((plar = & (2 (7)) sl

1=l 1 =1

IIA
<

The left-hand side of (62) is 0 while the right-hand side is positive since for n
we have 2n = (?) for all 7 and for some ¢ we have 2n > (?)

Confining ourselves then to n = 6 we obtain from the conditions (60) and
Q(p1) = 0 the inequality

(63) 2(pr — g)ppA” — A’ 2 0,
or substituting 4’ = —n("™" — ¢"™) and 4” = —nn — D" + ¢
we obtain

(64) —nn — D2(p — @)ma@i” + ¢ + o™ — @) 20.

Condition (64) can clearly not be satisfied if 2(n — 1)(p1 — qg1 > 1 or if
¢1 — 291 > 3(n — 1). But this inequality holds for the range ¢ = 1 = ¢”

1 1 1 1
. r— 1 — 1 1 r_1 L
where ¢ 4 %~ am—1) and ¢ i+ 6~ in = 1) are
tabled below:
n | 6| 7] 8 | 1w0] 12| 1] 16| 18] 2
q J138 | .106 | .086 | .064 | .051 | .042 | .036 | .031 | .028
q’ 362 | .394 | .414 | .436 | .449 | .458 | .464 | .469 | .472

We may therefore confine ourselves to the ranges 0 < ¢1 < ¢’ and ¢" = ¢1 < 3,
and will show that in these ranges equation (61) cannot be satisfied forn = 7.
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Dividing the left- and right-hand sides of (61) by ng and introducing the func-
tions

L@ = —p"— Vg, R@ = 2L
we have .
L =(1—-(0—-"/ng=1-=13n—-1)01-9" ¢

where ¢ is a mean value from the quadratic remainder term in the Taylor ex-
pansion of (1 — ¢)" at ¢ = 0 and see that L(g) < 1.

On the other hand R(g) = 2p(p™* + p"°¢) = R*(g), say. Since forn = 7
and ¢ < ¢/, (dR*(¢))/(dg) < 0, R*(q) attains its minimum for ¢ = ¢’ and sub-
stituting the above values of ¢’ it will be found that R*(¢’) > 1 forn = 7 so
that for 0 < ¢ = ¢’ we have that L(gq) < 1 < R(g) and (61) cannot be satisfied.

Turning to the range ¢” < q < % we write nqg(L(q) — R(q)) in the form (62),
that is,

(65) na(t@) - k@) = & ((7) - 20) e

1=

The only terms which are negative in the right-hand side of (65) are those for
i = 1and ¢ = n — 1. Taking the latter first and comparing it with those for
t=mn— 2and 7 = n — 3 we write for the sum of these three terms

e (=g (02 ) ()

and it is clear that the quantity inside { } is positive forn = 7and ¢” < ¢ < &,
p = 1 — q. Likewise combining the terms for 7 = 1 and 7 = 2 we find

i (-1 (05 - 2) ),

and it is clear that the quantity inside the { } is =0 for any p = gand n = 7.
It follows that equation (61) cannot be satisfied for n = 7 and the above ranges
of q.

For the remaining case n = 6 the only root p, of Gs(p1) = 0 over the range
1 <m=1-4¢";1—¢ = p <1 was determined numerically asp, = 0.5754
and G¢ (.5754) < 0 verified by substitution in the left-hand side of (63).
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