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A PROPERTY OF THE NORMAL DISTRIBUTION
By EveenE Lukacs AND Epgar P. King!

National Bureau of Standards

1. Summary. The following theorem is proved.

Let X;, X;, ---, X, be n independently (but not necessarily identically)
distributed random variables, and assume that the nth moment of each
X = 1,2, ---, n) exists. The necessary and sufficient conditions for the exist-
ence of two statistically independent linear forms ¥y = > ~,a,X, and ¥, =
> b X, are:

(A) Each random variable which has a nonzero coefficient in both forms is
normally distributed. .

(B) E:-laabatff = 0.

Here o denotes the variance of X, (s = 1,2, --+ , n).

Forn = 2and a; = by = a; = 1, b, = —1 this reduces to a theorem of S.
Bernstein [1]. Bernstein’s paper was not accessible to the authors, whose knowl-
edge of his result was derived from a statement of S. Bernstein’s theorem con-
tained in a paper by M. Fréchet [3]. A more general result, not assuming the
existence of moments was obtained earlier by M. Kac [4]. A related theorem,
assuming equidistribution of the X; (¢ = 1, 2, - - - n) is stated without proof in
a recent paper by Yu. V. Linnik [5].

2. Introduction. We consider two linear forms

1 Vi=2aX, Yi=2bX,
in the n independently distributed random variables X;, X,, ---, X.. We
arrange the variables so that the first p (X1, X, -+, X,) have nonzero coeffi-
cients in both forms and the remaining (n — p) have zero coefficients in one form
or the other. Clearly 0 < p < n. When p = 0, Y and Y are trivially independent;
when p = 1, ¥; and Y, cannot be independent. For p = 2, it is clear that the
statistical independence of the original linear forms (1) is completely equivalent
to the independence of the forms Z; = 2. 2.a, X, and Z, = »_ 2.b,X,. This
means that when p < n the distributions of the random variables X 41, - -+ , Xa
do not affect the independence of Y; and Y, . This is why the theorem contains
only a statement about the distributions of those random variables with non-
zero coefficients in both forms.

If for some pairs of corresponding coefficients, say the first r (1 < r < p),
the relation »

(2) (ll/bl = ag/bz == e = a,/b, (5
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holds, then we can rewrite Z; and Z, as
Zl = C(lel + et + brXr) + a/r+1Xr+1 + e + apo ,
Z2 = lel + e +brXr+br+1Xr+l+ e + prp-

Introducing the new variable X; = b,X; + -+ + b,X,, we see that the inde-
pendence of ¥, and Y, is equivalent to the independence of the forms Z; =
cX, + a1 X, + o0 F (lep~ant Zg_ =X, + by Xy + oo+ b X, If
the theorem holds for the forms Z; and Z,, Cramér’s theorem [2] shows that the
normality of X, implies the normality of the random variables X, , X;, --- , X, .
We proceed in the same manner if there are several groups of random variables
for which a relation of type (2) holds. Hence our problem reduces to the study
of the independence of two linear forms whose coefficient matrix contains no
vanishing minor of order 2.

Finally it is clear that the independence of Y, and Y. is equivalent to the
independence of the forms ¥, = D ra.(X, — E[X.]) and

Y, = X onab(X, — E[X.]).

Therefore we shall assume without loss of generality that the following conditions
are satisfied:

(i) aabs # Oy s = 1, 2, . , n
(i1) ab; — ab, # 0 foralls # t;s,t=1,2,:---,n,
(iii) E[X,] = 0. s=1,2,---,mn.

3. The functional equation for the characteristic functions. Denote the
distribution function of the random variable X, (s = 1, - - - , n) by F,(z) and the
corresponding characteristic function by f,(¢). Let h(u, v) be the c.f. of the joint
distribution of Y, and Y, and write hy(u) = h(u, 0) and ho(v) = h(0, v). Clearly
hi(u) and hy(v) are the c.f.’s of the distributions of ¥, and Y., respectively.

We prove first that our conditions are necessary; that is, we assume that
Y, and Y, are statistically independent. In terms of characteristic functions
this means

3) h(u, v) = ha(u) ho(v).
Further, because X, , --- , X, are independent, we have
(4) h(u) = Hlfa(ots u),
(5) ha(v) = 116, 0),

(6) h(u, v) = fIlf,,(a,, w4+ b, o).
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Finally, substituting (4), (5), and (6) in (3) we obtain the following functional
equation in the characteristic functions:

(7) sI:j[lfs(ou w4+ bov) = gfs(as w)fo(bs v).

4. The differential equations for the cumulant generating functions. The
general procedure for determining the explicit form of the characteristic functions
fs(t) will be to differentiate the logarithm of (7) r times (r = 1, 2, -+, n) with
respect to u, set u = 0, and solve the resulting = differential equations for In £,(?)
(s=1,---,n).

We first note that f,(0) = 1 (s = 1, - -+ , n) and that f,() is a continuous func-
tion of 7. Therefore there exists a neighborhood of the origin in which all the
factors occurring in (7) are different from zero. This neighborhood could of
course be the entire plane. In the following derivation we restrict the values of
u and v to this neighborhood; then we may take the logarithm of both sides of
(7) and obtain

(9) ; ¢s(asu =+ b, 1)) = é ¢’s(as ’LL) + g ¢s(bs 1)),

where ¢,(x) = In f,(z). Differentiating (9) r times with respect to u and setting
= ( yields

(10) > [56;’, és(asu + b, v)] = Z [ - ¢.(a, u)]

8= u=0

Letting z, = a,u, we find that the typical term on the left side of (10) becomes

9" L[
(11) [% és(a,u + b’”)l_o = a, [az; és(2, + b, v)]

28

With the substitution ¥,(v) = ¢,(bw), (11) becomes
(12) | L stntom] = (%) Lo,
our e ° _ju=0 b d 4

Similarly the typical term on the right side of (10) becomes

(13) [i s (as u)] = q; ¢ ¢,(zs):| = ({as) "«
) dur u=0

dz’ 2 5=0

where x(s) is the rth order cumulant of X, . Substituting (12) and (13) in (10)
we obtain

(14) Z 53 \If (v) = Z (i) k& r=12--,n

where £ = a,/b, . Differentiating (14) (n — r) times yields the system of differ-
ential equations
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Zgad ‘I’.(T))-O r=12 ..-,n~1

8=l

Z el T ‘I' (v) Z:‘ (i) "k,

(15)

We have to determine all the dlstrlbutlon functions whose characteristic func-
tions satisfy this system of differential equations and the initial conditions

[;r\l’a(v):] (Zba)r () r=12--,n—1

¥,(0) = 1.

(15a)

We now define

& £n
D. = g? EE.
,:.{' f:

and denote by D, . the cofactor of the element in the sth column and the nth
row of D, . Considering (15) as a system of n linear equations in the quantities
a"¥,(v)/dv", we obtain the solutions

f - ¥,0) = D"‘ Z (a)"xs” = °Cn,  say.

Integrating (16) n times and employlng the initial conditions (15a) yields

n—1
w0 = 5 @0y 4 Com e

je=1

(16)

Since f,(bw) = exple.(bv)] = exp[¥,(v)] we have
n—1 s

an fu(bsv) = exp [Z (&b, 0)’ + 2 br pong @0e0)" ]

In case any of the functions f,({) become zero for some real ¢, this solution
is valid only in a certain neighborhood of the origin. We next show by an indirect
proof that none of the functions f,(£) (s = 1, - - - , n) has a real zero; from this we
can conclude that (17) is valid for all real ¢.

Let us therefore assume that one or more of the c.f.’s f,(f) have zeros. In this
case at least one of the functions f,(b,v) will have a zero. Denote by vy the zero
closest to the origin and by f,(¢) a function for which f,(b,0y) = 0. For | v | < | v |
we have f,(bv) # 0 (s = 1, --- , n) and formula (17) is valid. Let v be a real
number such that | » | < | v} |; then we have by (17)

n—-1 ('n)
@as) fr(br0) = exp [Z () + bl ]

J
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But f,(¢) is a continuous function. Hence lim,..0 f,(b,v) = f.(b,»7) = 0 by assump-
tion. However, from (18) it is clear that

n—1 (n)
lim fr(brv) = exp I:Z ! (zbr ) + bn '('lb vl)) :I

V=0,

which is always different from zero. This is a contradiction, and hence formula
(17) is valid for all values of v. Writing ¢ = bw we finally obtain

S o Con
19 70 = exp| 59 @0+ o @ .

6. Proof of the theorem. We have determined all the solutions of the system
(15) satisfying the initial conditions (15a). In order to find the distribution
functions whose characteristic functions satisfy this system we must select
those functions (19) which are characteristic functions. This is easily done by
means of the following result [6].

Theorem of Marcinkiewicz. No function of the form ¢*t*** %" (2 > 2) can
be a characteristic function.

Hence the degree of the polynomial in (19) cannot exceed 2. In case n > 2
we must have

Y =0 i=34 -, n—1;8=12 - ,0;0>3
Cen=0 s=12 .- ,n3n>2.
Because the factor D, /D, in C,,, cannot vanish, these relations reduce to
K2 =0 j=8 =-,n—=1 n>3
(20)
Z aly = n> 2

=1

There is no restriction if n = 2. In view of (iii), «{” = 0 also, and (19) becomes
(21) fu(t) = exp[—1o28] n > 2.

This shows that each X, (s = 1, - -+, n) must be normally distributed, which

is condition (A) of the theorem. All cumulants of order r > 2 vanish for a normal

distribution, hence equations (20) impose no additional restrictions. In case
= 2 we have

(22) ‘ () = exp[—3kt'] n =2,

where k is determined from (16) and (19). The independence of ¥; and Y, im-
plies that they are uncorrelated which yields condition (B) and completes the
first part of the proof.

It is easy to establish that conditions (A) and (B) are also sufficient. Assuming
that (A) and (B) hold, it follows that Y; and Y, are uncorrelated and normally
distributed. Hence Y; and Y» must be independent.
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Forn = 2and a; = as = by = 1, b, = —1 we obtain from (22)
£ = exp [— (o1 + 02)¢*/2] s=102
This shows that o7 = o7 and establighes Bernstein’s theorem.
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ADDENDUM

The authors are indebted to Professor G. Darmois for calling their attention to
his note in the C. R. Acad. Sci. Paris, Vol. 232 (1951), pp. 1999-2000 in which he
proved the theorem for n = 2 without assuming the existence of moments. He
later extended this to the case of arbitrary n. His paper will be published in the
Bulletin of the International Statistical Institute. The method of proof used by
Professor Darmois is different from the one presented in this paper. The authors
learned that these results were also obtained by methods similar to Darmois’
by B. V. Gnedenko (Jzvestiya Akad. Nauk. SSSR, Ser. Mat., Vol. 12 (1948),
pp. 97-100) for the case n = 2 and by V. P. Skitovich (Doklady Akad. Nauk.
SSSR (N.S.) Vol. 89 (1953), pp. 217-219) for any n.

While reading the proofs of this paper the authors learned that the theorem
was also discussed by M. Logve in the appendix to P. Lévy’s “Processus stochas-
tiques”, Gauthier-Villars, Paris, 1948, pp. 337-338.
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ON OPTIMAL SYSTEMS!
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1. Summary. For any sequence x;, @, --- of chance variables satisfying
|z, | £ 1 and E(@, |21, -+, Zpy) £ —u(max | z. ||z, +++, Ta1), Where u
is a fixed constant, 0 < u < 1, and for any positive number ¢,

t
Pr{Sl:p(xl-{-... + o) =) §<i+z>
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