ON QUADRATIC ESTIMATES OF VARIANCE COMPONENTS'
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1. Summary. In this paper quadratic estimates of variance components are
considered. For the general balanced nested classification with no specific distribu-
tions assumed, it is shown that the quadratic estimate which is unbiased and
which has minimum variance is given by the analysis of variance method of
estimating the variance components.

2. Introduction. Consider the general balanced nested classification which is
described by the model

Yiik---p =u-+a + bij + Cijk + dijkm + o 4 eijkeep -

If all the components are fixed except ..., , and if e;j..., are uncorrelated
random variables with means zero, variance ¢° and with finite fourth moments,
then Hsu [1] has shown that the best (minimum variance) quadratic unbiased
estimate of o® is given by the analysis of variance method of estimating o”.

If we assume a distribution for the e;j...,, then we can get the maximum
likelihood estimate for ¢°. However, this method does not tell us how the vari-
ance of this estimate compares with the variance of estimates obtained by other
methods for finite-sized samples (except for efficient estimates).

If a;, by, Cist, -+, €iji..., are uncorrelated random variables with means
. 2 2 2 2 : N

zero, variances g, ob, o,, -, and ¢ respectively, then Crump [2] gives
. . 2 2 . .

methods for estimating o., o, o7, -+, and ¢° by making an analysis of

variance table, equating expected to observed mean squares and using the solu-
tions to these equations as the estimates. These estimates are quadratic functions
of the observations and are unbiased, but very little has been said about the
size of the variance of these estimates relative to estimates given by other
methods of estimation. Proofs will be given for the two-fold classification only,
but they generalize without great difficulty. Theorems will be stated for the
general case.
3. Notations and definitions. Consider the linear model

B1) YVip=p+ai+b,+eu, i=1---Nj=1---Ny;k=1---Ny,
where Y;; is the observation; u is a constant; and the a;, b;;, and ¢;;; are inde-
pendent chance variables with means zero, variances oe , o3, and o, respectively,
third moments B: , B , and B’, respectively, and finite fourth moments o, ap,
and o', respectively. The problem is to estimate o3 by quadratic functions of the
observation Y .
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DeriniTioN 1. By the best quadratic unbiased estimate (BQUE) of o We
will mean a quadratic form @ which satisfies the following:

(3.2) (a) EQ = o3, (b) varQ < var Q%,

where Q* is any other quadratic fofm in the observations satisfying (a). (£ de-
notes mathematical expectation, var denotes variance.)
DerFinNITION 2. Let a general quadratic form @ be denoted by
Q= 2 YiuYeugii.
1jk;rst
The quadratic form given by the analysis of variance method of estimating
oris M = D Y Y,misi, where the elements mi}; are as follows:

—1 . .
(a) NNV =) r=1;8#J
(33) rst 1 —_— e —_ e
misn = (b) NN, = D r=1;8=7t#k,
e O0 all other values of 47krst.

The following relations can be obtained from (3.3):

(a) > mi% = Oforanyr,s, t. (b) Z mis = 0 for any 1, j, k.

ik
(c) Z mis = 0 for any 7, s, ¢,4. (d) Zm??-,‘c = 0 for any ¢, j, k, r.
@ 2 milk=

153tk

TaEOREM 1. In the model given by (3.1) the BQUE estimate of oy is given by
the method of analysis of variance, that is, by the quadratic form M stated in (3.3).
Proor. Let

(3.5) D = Y Y:uYrudiii where gifh = mij + diji,

(34)

which implies @ = M + D. The problem is to give exact specification to each
¢i5t so that Q satisfies (3.2) or, since mij; are known, the problem reduces to
giving exact specification to each dij; . To satisfy (3.2a) we must have E(Q) =
E(M) + E(D) = o+ . This reduces to

3 W i) + o 3l + dis)

(3.6

toa X @m0 2 (di+ min) = o,
R (r=1,j=s) R (r=i;j=8;k=t)

where the summation index R refers to summing over all values of the indexes

with the restriction in parenthesis. For example, under the second summation

sign the symbol R(r = ¢) meanssumoveri =1+ Ny;r=1---Ny;j=1"--+

Ny;s=1---Ng;k=1---Ng;t=1---Ns; with the restriction r = 1.
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Equating coefficients in (3.6) and using (3.3), we get the following conditions

rat

on d,ﬂ. :

(@ 2.dif=0 ®) 3 dili =
3.7) =
(c) 2 di=0 > dijk = 0.
R (r=1,j=8) (d) R (r=i;j=8;k=1)
Now
var Q E Z Yt]k Yrst(mwk "|" dz;li ] a:
(38) = E ; Yijlc Yrst m:;llc + E Z Yuk Yrst d:;lﬂ

+ 28 [; Yijk Yrstmv'jk ; Yfgh Yuvw dfgh] - 0'b

where the index P is defined for the subscripts f, g, &, u, v, w, the same as R
was defined for i, j, k, r, s, . We will examine the last term of (3.8) in detail.
Let us first examine the quantity

3.9 ; Yiie Yesemisr .

Substituting (3.1) into (3.9) we get
Eg: ([.L + a; + b,‘j + eijk,) (I»‘ + a + b + erst)m;j'ltu

which in virtue of (3.4c) and (3.4d) reduces to
? (bif + eijlc) (brs + erst)mz;ltc .

Thus the third term of (3.8), omitting the coefficient 2, reduces to
E [ZR: ; (bs; + €i) (bre + eree) (0 + a7 + bsp + €s0n)
rst uvw]

(Il' + Oy + buv + euuw)mnk

Due to (3.7a), this term, which we may denote by C, will contain no terms involv-
ing u*. Due to (3.7b), C will contain no terms involving o> , since this would force
u = finds’ and D paer dih’ = 0 by (8.7b). Since each of the a;, bi;, and e:j
are independent with means zero, the expectation of any term in C involving
these elements linearly will be zero. Neither can C contain a term which involves
u linearly, since this would be one of the forms uB?® or uBj . But terms such as
uB® could come only from elements of e;j and e, when ¢ = r;j = s;and k = ¢.
When these corresponding subscripts are equal the term vanishes by (3.3c).

Also terms such as uBj} could come only from elements such as ubi; by, by, with
i=r=Ffandj = s = g, or ubijbyby, with¢ = r = 4 and j.= s = v. Thus we
would get (from ub;;b,,by,)

wBy 20 20 midiy = uBy > A Zm”k =uBd D> dw IT’TI@

17kt uvuwh uvw;thj uvw; 1Jh
3 uvw
~— uBj Z dign -

N N2 ¢ 7h; wow

(3.10)
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This is zero by (3.7a). Now let us examine terms of C which lead to terms in-
volving o3o”. This can come from only six terms:

t 2 2 t
M E 222 bijbreeuwmiz dig’ = o’ 2, mil dise.
R P 1 ikt uvw
.
This is zero by (3.7d).
w 2 2 ik
(2) E Z Z bfa bus €iik emml d h = (X Z m;jk :ff:;.”.
R P 1 3k; wowh
This is zero by (3.3¢).
\ 2 2 rst i
(3) E 20 D bijbuy erareronmiin dii’ = ovo kE mije drat.
R P 1 jkwirst

This is zero by (3.3) unless r = 7. If r = 1, we get
rst 1w ist ijw i3t ijw
2. mikdiy = 2 midiy 4+ 20 mil dif
1jkwirst tikwt;sx£j iikwt
. uw ist i Jw ut
= Z Wist Z mijr + Z ist Mijk.
ijwiisx£ g Tjwtk

Using (3.3) this becomes

i —1 ) a( 1 )
,-,-w%:#j i (NlNgNs(Nz—l) +i§1 WP \N1N:N3/

This is zero by (3.7b) and (3.7¢). The remaining three terms are:

rst uw 2 2 rst 3tjk
(4) K Z Z brs b/a €1k Cuvw Mijk dfgh = 0p0 E Mk drsh
R P rstijkh
- rst juvw 2 2 rst arst
(5) E 25 20 bisbrybrss Cuvomiih dja = v’ 2, midkdish;
R P ijkhirst
¢ 2 2 r8t
©) 1222 bubueaneramii dig’ = oho mis diji .
R P ijkwirst

Each of these three, (4), (5), and (6), is zero by the same argument as used for
part (3). Thus we have reduced C to two terms, (4) and (B):

(A) = E 2, ; biibrs byo buwmisk djon”
R

uvw

(B) =F Z Z €ijk Crst €fgh Cuvw 7"’1]1» d/ah .
R P

Let us examine these in detail. We see that (A4) is zero unless the subscripts
fit one of the following four models:
Adl7=r;3=s;f = u;g = v where either ' forj # g.
A21=f;7=g¢g;r =u;s = v where either ¢ % rorj # s.
A31=wu;j =v;r =f;s = g where either ¢ # r or j # s.
Ads=r=f=u;j=8=¢ =
TFor case A.1, (A) reduces to zero by (3.7¢). In case A.2,if ¢ # r, then (4) =
0 by (3.3¢). If ¢ = r, we get

18t jisw

-1 .
4 isw
(A) = oy 2. miidin =0y 2. 3 i jh
cisuthmssei sistimmene i \ W1 N2 Ns(W3 — 1) ’




VARIANCE COMPONENTS 371

which is zero by (3.7b) and (3.7¢c). For case 4.3, (4) is zero by an argument
identical with that for case 4.2. For case 4.4, we get
4) = ap 2. milidilt
. ijkthw

which is zero by (3.7¢). Thus (4) is equal to zero.

Now for (B). We immediately see that (B) is zero unless the subscripts fit one
of the following four cases.

Bli=r;j=s8;k=1tf=u;g=0v;h=wwherei # f;j = g;or k 5 h.

B2i=fj=g;k=h;r=u;s=uv;t=w where either 1 = r; j = s;
ork #t.

B3i = u;j=v;k=w;r=f;s=g;t=hwhere either ; = r;j ¢ s; or
k5t

Badi=r=f=uj=s=g=vk=¢=h= 1.

For case B.1 we get

(B) = ¢* Z;. miik dio with either 5 # f;j # g or k 5 h;
ik
but this is zero by (3.7d). For case B.2 we get
B) =¢ > miy dise with either ¢ & r;j # s;or b # ¢
tikirst
If © > r, this is zero by (3.3¢). If ¢ = r, we get
(B) = o' X, mitdiy with either j > sork % ¢
i5k;st

If j # s, we get, using (3.3a),

-1 )
= g ist
B =o' 2, (NlNzNi(Na - 1)) &
which is zero by (3.7b) and (3.7¢). If j = s and k # ¢, we get

— 1 ) it
B) =« ,-,-Mz;,;#t(NlNzNANg 1) G

which is zero by (3.7¢) and (3.7d). Thus (B) is equal to zero for case B.2. For
case B.3 (B) is zero by an argument identical with the argument for B.2. For
case B.4 we get

B) = o' 2 mili difi.

ik

But this is zero by (3.3c). Thus (B) is equal to zero.
We have thus proved that C is zero, and (3.8) becomes

3 12 i 3 st12
varQ = E [; Yie Yiamizl” + E lZR: Yiin Yoor diji],

but this is a minimum if d;j; = 0. These values are also consistent with the condi-
tions of unbiasedness. This proves the theorem. By methods similar to above, it
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can be shown that the BQUE estimate of o2 (or of ¢°) is given by the analysis
of variance method of estimating variance components.

4. The k-fold classification. Let the random variable Y;;,...;, be given by
(4) Yiliz- = u + a(l) + affz)z + a'gf't?zia + a‘l(fz)z
where ¢; = 1 -+ n; and p is a constant and the a‘” are independent random var-

iables with the following properties:

13 t 2
E’(a«( : i) =0 var (1,(1,)2 = o} E’(a,‘l‘i),...it)4 =up < o t=1.--F,

3182
This is the general balanced nested (hierarchal) classification.
TreoreM I1. The best quadratic unbiased estimate of o; (denoted by &%) in the
model defined by (4) is given by the analysis of variance.
TraeoreM III. The variance of &; is given by

2(ntnt+1 - 1) = L 2 2 : 2 4
[2 2. 2 NpuNgaoyog+ 2, Npuop

NNy — 1)(ne — 1) p=t+1 g=p+1 p=t+1
dn, ot < N, 2N,
+ N_——l(nt — 1) q_ZH:_l Nq+1<fq + == N (m: 30’t) + N_—_—l(’ﬂe — 1)

TueoreM IV. Under the model defined in (4), the best quadratic unbiased
estimate of Y -1 gic: (where g; are known constanis) is given by D i gib: .
This is proven by a method similar to the method used to prove Theorem I.
TarorEM V. The variance of [ Y i1 g:63] is
k k—1 k 2
2 2 4 gigip1 [ 2]
i P D e e N .
L 0 Var 8 = N N W =) L2 V0
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where Ny = Nylyys - e if u S kand Ny, = 1 if u > k.
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