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CORRELATION BETWEEN A DISCRETE AND A CONTINUOUS
VARIABLE. POINT-BISERIAL CORRELATION

By RoserT F. TATE
University of Washington!

1. Introduction and Summary. A problem of some importance in statistical
applications, especially in the field of psychology, is that of finding a measure
of association between a discrete random variable X, which takes the values
0 and 1, and a continuous random variable Y. The ordinary product-moment
correlation coefficient p(X, Y) is used for this purpose. It has received the name
point-biserial correlation coefficient because of its relation to the biserial correla-
tion coefficient proposed by Karl Pearson for a similar problem. The usual
estimator 7, based on a random sample (X;, Y;),7 = 1,2, --- , n, is referred to
as the sample point-biserial correlation coefficient.

The psychological value of p (and hence of ) is that it affords a measure of
the degree of association between a trait and a measurable characteristic, usually
an ability of some kind. For the sth individual in a random sample of n in-
dividuals, X; has the value 1 if the trait is possessed and Y, is a measure of the
ability in question.

We shall give in Section 2 the appropriate mathematical model, based on
normal theory, and the asymptotic distribution of » (Theorem 1), the derivation
of which is an elementary application of a well known theorem of Cramér.
An important special case of this distribution will be discussed in Section 3,
namely that in which X takes the values 0 and 1 with equal probabilities. In
this connection a variance-stabilizing transformation will be given (Theorem 2).
Numerical work based on this transformation may be carried out with the use
of existing tables. In particular, the calculation of confidence limits for p is
immediate. Theorem 2 is especially useful in investigating the association
between sex and some other characteristic, since animal populations consist of
approximately half males and half females. As an illustration of the ease with
which calculations may be carried out, a problem is considered in which the
trait is male and the characteristic is IQ.

The small-sample distribution of r is quite easily found, although it is difficult
to deal with when 7 is even moderately large, asymptotic methods appearing
to be more desirable. This is discussed in Section 4.
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2. Model and asymptotic distribution. Consider (X;, ¥,),7 =1,2, ---, n,
a sequence of independent random vectors. Let X ; have the Bernoulli distribution:
PX;=1)=p, PXi=0)=gq, 0<p<Lp+g=1L1

Let each Y, have the mixed distribution with distribution function F(y) =
pF 1(?/) + qF o(y)y where

B =PY syX =9 =[ —

w TV 27

—[(z—u;)2/272 .
e [(z—uj) 2/272] dZ, 7 =0’ 1?

The following notation will be used. The standardized difference of means,
(u1 — mo)/7, will be denoted by A. The variance of the random variable Z will
be denoted by V(Z). The fact that Z is asymptotically normal with mean a
and variance b’ will be denoted by Z ~ 9t(a, b%). Of course,

r= {Z(XiYi) - nXY}/\/Z(X, — X‘)z\/Z(Yi -7

Throughout the paper the indices for all summations run from 1 to n. Easy
calculation shows that

EX)=p, VX)=pg, EY)=pu+g, V()=r771+pga’),
EXY) = pm, oX, ¥) = AVpg/(1 + pgad.

THEOREM 1.

2

4pg — p'(Bpg — 1) (1 — pz)z].
4npq

As r is a function of sample means which has a total differential at the point

given by the expectations of these means, this result is obtainable by a lengthy,

but elementary, calculation from a theorem of Cramér [1]. Moments uo =
E{(X — p)[Y — E(Y)]"} are needed. In this case

pa = 7{pgal) + (—p)'ebMN)},

’I‘Nf)l[p,

where

= [ et o= e w0 = [ €

_12/2
27 oo vV 2r € dt.

Straightforward analysis leads to Theorem 1.

3. A special case. It may easily be shown that the asymptotic variance of r
has a minimum for each p when p = ¢ = 3, since, for each p,

1 2 2\2 1
- L =2, - — —1)=zo0.
VeIP) = Velp = Lot - o (i - 1) z o0
In this event we obtain the greatest precision (in terms of the smallest con-
fidence interval for p). This we should expect intuitively because of the obvious
analogy between our set-up and that of the ordinary two-sample ¢ test, since
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in the case of that test it is well known that equal sample sizes yield greatest
power. For the case p = } we have from Theorem 1

r~xN [9,517—%(2 - o)1 - pz)z].

The parameter p may be removed from the variance by the variance stabilizing
transformation ¢(x) which satisfies the equation

¢'() = V2/(1 — 2)V2 — o

The desired solution is ¢(z) = /% sgn(x)-sech™ (1 — 2%). The function tanh™(z)
is given in Table VB of Fisher [2]. Hence it is convenient to express sech™ in
terms of tanh™ and express our final result as follows.

THEOREM 2.

sgn(r)-tanh™v/1 — (1 — 72t ~ Nsgn(p)-tanh /T — (1 — p??3, 2/nl.,

ExamprLe. Calculations associated with Theorem 2 are quite easy. Consider,
for example, that we are sampling school children of some fixed age. Let X; = 1
if the 7th child is a boy and 0 if the sth child is a girl. Let ¥; be the IQ of the
th child. Assuming variability of IQ to be the same for the two sexes, we shall
use the following data for 25 school children in order to determine 95 per cent
confidence limits for p.

Boys l Girls

106 143 109 109 93 115 105 107 111
98 114 98 85 119 113 117 111 92
109 107 96 91 104 89 85

S o= 11 Yy = 2626 Day: = 1174 1.960/(2/n) = 5542
Sut=11 Dyl=279738 r= +.120

From Table VIII of Pearson [5], 1 — (1 — )’ = .02891.

From Table VB of Fisher [2], sgn(r)tanh™ /T — (1 — %)% = .1718.

Therefore, 95 per cent confidence limits for sgn(p)tanh™ /1 — (1 — p?)? are
1718 =+ .5542. To find confidence limits for p, we use the same tables in reverse
order to solve the equations .

tanh™4/T — (I — p?)? = 7260, and = .3824.

Taking the positive solution for the first and the negative solution for the sec-
ond, we obtain (— .263, .465) as 95 per cent confidence limits for p.

4. The small sample distribution of r. Let T = rv/(n — 2)/(1 — ré). The
small sample distribution of r can be obtained easily by making use of a relation
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given by Lev [3]. Lev considered not the distribution of 7', but only the con-
ditional distribution of 7. More precisely, let > °X; = niandne = n — n,. Then

an o) = 4/ -1 [ )35 v, -

=0 j=1

where ¥, = > (1 — X)Yi/ne, ¥1 = 2(X:iY)/m, ¥ = ZY ,/n. Expression
(4.1) denotes the conditional value of r given >°X: = m. It can be shown
(Lev) that

V/n = 2r(ny, ny) 4/nonl(y1 _ Yo)//‘/ 3 (v, — 7

V1 = 2(ng, m1) 2 =0 j=1

Denoting this quantity by ¢(no, n1), we have (Lev)

(Yl - Yo) - (lJl - Iio) (Nl I-lo) }//‘/ 73 _
t(n,n):{ s Y
0 1 )T'\/"’L/n')’n’1 n/no m 2(n 2) t;o;l (Yz] Yz) .
The random variable ¢{(n,, n1) has the noncentral ¢ distribution with » — 2
degrees of freedom, and parameter of noncentrality
= A\/nonl/n = p\/nonl/npq(l — p.

Denoting the density of ¢(ng, ni) by f(; n1, n, p, p) and the density of T by
g(t; n, p, p), we have, by the definition of ¢(n, , n1),

= n n n—n
gt n,p, p) = Z( >p‘q (¢ na, my D, p).

ny= ny

When p = 0, we see that f(¢; n1, n, p, 0) is independent of n; and p, since § = 0.
Hence, g(¢; n, p, 0) is also independent of p and is the density of the ordinary ¢
distribution with n — 2 degrees of freedom. Thus, to test the hypothesis H:p = 0
at level of significance «, we reject H when | T | = k., where k. is obtained
from a table of the ¢ distribution. The power against an alternative of the form
(p, p) can be computed from the expression

n +ha
Blp,p) =1 — ME_:()( )p" Ui f S, p, ) di.
The integrals may be evaluated directly from the tables of Neyman and To-
karska [4] for level of significance @ = .05 or « = .01. They use the symbol p
for parameter of noncentrality, instead of, our é.

If a large sample is available, quicker and sufficiently accurate results may
be obtained from Theorem I. Then the above procedure, which amounts to
looking up n values in the Neyman-Tokarska table, can be avoided.
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A COMPUTING FORMULA FOR THE POWER OF THE ANALYSIS OF
VARIANCE TEST

By W. L. NicrHoLsoN
Unaversity of Oregon® and University of Illinois?

1. Summary. A formula for the power of the analysis of variance test is
derived for the case when the denominator of the F ratio has an even number
of degrees of freedom. The form employed is particularly adapted to computa-
tion of the power as a function of the alternative hypothesis with arbitrary
fixed level of significance and fixed degrees of freedom. For m degrees of freedom
in the numerator and 2, 4, 6, 8 and 10 in the denominator, the power functions
are deduced from the general formula, with an indication of their use.

2. The power function. In the classical analysis of variance test we are in-
terested in a ratio of the form

1 F=n2 ot/ m3 i,

i=1 =1
where z; (¢ = 1,2, - ,m)and y; (j = 1,2, --- , n) are distributed N (6, o°)
and N (0, ¢°), respectively. If the null hypothesis, 6; = 0 (: = 1,2, -+ , m), is

false, it is well known that the distribution of F is completely specified by m, n,
and the single additional parameter

Therefore, for a predetermined level of significance «, the power of the test is a
function of m, n, and A. It is [1]

0 k

3) POgbie) =1 =2 X 1o+ 1, b),
=0 k!

where m = 2a¢ and n = 2b, and

_ 1 T ath—1 -l
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