ON THE DISTRIBUTION OF THE LIKELIHOOD RATIO!

By HErMAN CHERNOFF

Stanford University

1. Summary and Introduction. A classical result due to Wilks [1] on the
distribution of the likelihood ratio A is the following. Under suitable regularity
conditions, if the hypothesis that a parameter ¢ lies on an r-dimensional hyper-
plane of k-dimensional space is true, the distribution of —2 log X\ is asymptot-
ically that of x* with & — r degrees of freedom.

In many important problems it is desired to test hypotheses which are not
quite of the above type. For example, one may wish to test whether 6 is on
one side of a hyperplane, or to test whether 6 is in the positive quadrant of a
two-dimensional space. The asymptotic distribution of —2 log A is examined
when the value of the parameter is a boundary point of both the set of 6 corre-
sponding to the hypothesis and the set of 6 corresponding to the alternative.

First the case of a single observation from a multivariate normal distribu-
tion, with mean 6 and known covariance matrix, is treated. The general case
is then shown to reduce to this special case where the covariance matrix is re-
placed by the inverse of the information matrix. In particular, if one tests
whether 6 is on one side or the other of a smooth (¢ — 1)-dimensional surface
in k-dimensional space and 8 lies on the surface, the asymptotic distribution of
\ is that of a chance variable which is zero half the time and which behaves
like x* with one degree of freedom the other half of the time.

2. Notation and background. We shall use some of the notation and results
of Mann and Wald [2]. In particular, if {z,} is a sequence of k-dimensional
chance variables and {f,} a sequence of positive numbers, we write

(1) T = 0p(fa)

if for each ¢ > 0, there is an M. such that P{| z,| > M.f.} < 1 — e Similarly
we write

) Tn = 0p(fn)

if ,./f» — 0 in probability, or equivalently, if, for each ¢ > 0, there is a sequence
M, — 0 such that P{| z.| > M. fa} <1 — e

Mann and Wald have shown that the calculus used with the usual O and o
notation applies to 0, and o,. For example, if z, = 0,(\/n) and y, = 0,(1),
then 2,9, = 0,(\/n). We shall frequently drop the subscript n where there is
no ambiguity.

We write d(x) for the distribution of z and d« (x,) = d(z) if the limiting
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distribution of z, exists and is that of x. The following are included in results
of Mann and Wald [2]:

If dw (z,) = d(z), then doo [z, + 0,(1)] = d(z).

If do (x,) = d(z) and g is continuous, then d«[g(x,)] = d[g(z)].

If z, — c in probability and =, — ¢ = 0,(f,) and g has continuous rth order
derivatives at ¢, then

3) 9(xs) = T(@a, ¢, 1) + op(f:t)

where T'(z, ¢, r) is the rth order Taylor expansion of g(x) about c.

Furthermore, we shall use some properties of likelihood functions and maxi-
mum likelihood estimates which are implied by the following regularity condi-
tions @ [3].

ConpitioNs ®. The data X = (x;, 22, +-+, Z.) consist of n independent
observations with common density f(z, 6) satisfying

(a) For almost all z, the derivatives

dlog f 8* log f 3% log f
a6; ’ 36,06; ° a6; 96; 36,,

exist for every 6 in the closure of a neighborhood N of § = 0.
(b) If 0 e N,
of o’f l 8% log f
I a5, <T@, | 56,05, <T@ 36; 06, 06,
where F is finitely integrable an\d E{H(x)} < M, with M independent of 6.
dlogfalogfl ||
Let the likelihood function be given by

< H(x),

is finite and positive definite.

L(X7 0) = IIlf(xo: ) 0)
From the above conditions, it follows that for § ¢ N
@) %log L(X,0) = % log L(X, 0) + A’8 + 30'Bo + |6]*-0,(1),

where A is the vector whose 7th component is
A; = l Z d'log f(za, 0)
N a=1 391
and B is the matrix whose (7, j) term is

1 <& 9% log f(z, 0)
B, == =
7 n o:z=1 801 a0 j
If the “true” value of the parameter is given by 6 = 0, that is, 6 is at the origin,
then the asymptotic distribution of v/ A is normal with mean 0 and covari-
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ance matrix J, where

J =

9 log f(z, 0) 9 log f(x, 0)
E ’ ’ = i
| Bt 0 2ot O} |y
is the positive definite information matrix and, furthermore, B — —J in prob-
ability. Also, the maximum likelihood estimate # computed under the assump-
tion 8 ¢ N satisfies

®) b = J'A + 0,(1/V/n).

Let us consider the likelihood ratio for the test of a hypothesis H:f ew c N
against the alternative K:0 ¢+ C N. For a set ¢ C N in k-dimensional space
we define

(6) P,(X) = sup L(X, 0),
) AX) = P,(X)/Py.(X),
8) A (X) = P.(X)/P.(X).

Since M\* is more expressive than A (that is, A = M*if A* < land XA = 1if A* >
1) it suffices to study the distribution of \*. We also define 8, as that value of
6 in the closure of ¢ which maximizes L(X, 6). Then L(X, 8,) = P (X).

3. Examples involving the normal distribution. We shall present a few ex-
amples where the abservations z have a multivariate normal distribution with
mean 6 and known covariance matrix =. Since the sample mean is a sufficient
statistic for the mean of a normal distribution, it suffices to treat the case where
the sample size n = 1. For this case

9) Pu(z) = (2n) | 3| Tl @@
where Q.(z) = infe. (x — 6)’ Z7'(x — 6). Then
(10) —2 log M*(z) = Qu(x) — Q-(x).

In the special case where £ = I, Q.(z) represents the squared distance from x
to w. In the more general case also, Q.(z) may be regarded as a squared distance,
but the distance is measured with respect to a non-Euclidean metric. We treat
the following examples of varying degrees of specialty.

ExampLe 1. Let w = {(6;, 62):a:101 + @20 < 0 < bi61 + a6}, and let the
complement of w be 7, and £ = I. Because of the symmetric nature of A\*, we
may assume that the angle ¢ from the vector (a;, az) to the vector (b, by) is
no more than 180°. Then w represents a cone with vertex at the origin and with
angle ¢ between the boundary lines. For = ¢ w, —2 log A*(z) is the negative of
the squared distance from z to the boundary of w; for z ¢ 7, —2 log N*(z) is
the squared distance from x to the boundary of w (Fig. 1). If 8 = (0, 0), the dis-
tribution of —2 log A*(x) depends only on ¢. Let us call this distribution G, .

We note that if ¢ = 180°, we may rotate the axes so that v is the right half
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~2106 ¥(x)e-c

-2008 X (x): 0

* 2
¢ o] =2Lo6 X (X)s-C

Fi1a. 2

plane. Then —2 log \*(z) = —ai for 2, > 0, and = 22 for = 0. Then Gig-
is characterized by the density

9(y) = 3@r) Yt |y | 3

which is related to that of x* in an obvious way.

ExampLe 2. We alter Example 1 to let = be a known positive definite sym-
metric matrix, not necessarily 7. Then there is a nonsingular matrix 7 such
that =™ = T'T. Let y = Tz,d = Ta, e = Tb. Our problem then is reduced to
that of the previous example where ¢ is now the angle from d to e. Since straight
lines go into straight lines under a linear transformation, it follows that ¢ g
180° if and only if the angle from a to b is S 180°. Also

d'e a'T'Th a’Z 1

=4[ Te| = V@TTa) ®TTh) ~ v (@=a)(5'z-) °
ExampLE 3. Let w be the first quadrant except for the origin and r be the set
consisting in the origin alone. Let = = J. Then —2 log A*(x) is

$1§OJ Oéxl

0=z | —23 | —@l+2d
=<0| 0 —ai
It is easily seen (Fig. 2) that if ¢ = (0, 0),
0, ¢ <0,
P2 logA*(@z) < ¢) =
3 + 3Pi(c) + 1Ps(o), ¢ 0,

where P, and P; are the c.d.f.’s for the x” distributions with one and two degrees
of freedom, respectively.
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4. Main result. We sball now treat the case where 6 is a k-dimensional pa-
rameter, and the density of f(:v, 0) satisfies the regularity conditions ®&. We first
prove

Lemma 1. If the origin is a limit point of ¢ and 6, — O when 8 = 0, then
b, = 0,(1/A/n) when 6 = 0.

Proor. Refer to equation 4 with 0 replaced by 8,. For each ¢ > 0 there is a
sequence ¢, — 0 and a K. such that with probability greater than 1 — «

. . K,
lo¢|<c"€7 IA|<,\/7_7/’ Z(BLJ+J’EJ) < Cne

,7=1

and the term represented by | 8, |° 0,(1) is less than K., | §, |*. When these in-
equalities are satisfied there is a K7 such that

0 < A’d, + 30, Bo, + 16, °0,(1) < —38,J5, - K* ('\"/ + el d, ]2>.
n
But then there is a Ki* such that 8, < K¥*/+/n. The lemma follows.
DeriniTioN 1. 4 set C ¢s positively homogeneous if 0 ¢ C implies a8 ¢ C for
a > 0.
DEeriniTION 2. The set ¢ s approximated by the positively homogeneous set C, if

inf |z —y|=o0(y])foryee and inf |z —y|=0(=z]|) forzeC,.
zeCy yee

We may remark that a set bounded by smooth surface through the origin is
approximated by the union of an open half-space with an optional positively
homogeneous subset of the tangent hyperplane. It is also easy to see that if ¢
is approximated by a nonnull positively homogeneous set other than the whole
space, then the origin is a boundary point of ¢.

Tuareorewm 1. If

(1) the regularity conditions & are satisfied,

(2) the origin is a boundary point of ¢ implies that 8, — 0 in probability when
0 =0, and

(3) the sets w and T are approximated by nonnull and disjoint positively homo-
geneous sets C., and C- ,

then, when 8 = 0, the asymptotic distribution of \* is the same as it would be
for the test of 0 € C., against 8 € C, based on one observation from a population with
distribution N(8, J ).

Proor. Throughout this proof we assume that the ‘“true’” value of the pa-
rameter is 0 and we use 6 to represent the argument of the likelihood function.
Since § = J A + Op(l/\/n),

ﬁ log L(X, §) = ﬁ log L(X,0) + 4’74 + o,(1/n).
Let 6 = J'A + n, with n = 0,(1/4/n). Then

}ng L(X, 6) = % log L(X, 0) + 34'T'A — 1'Jn + o0,(1/n).
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Applying Lemma 1 to w and 7,
—2 log \*(X) =ulinf 9'Jq — inf 7'Jn] + 0,(1).
few fer

But
inf (y — 6)'J(y — 0) = Jnf —0Jy -6+ oyl

Geo

and therefore

—2log A\*¥(X) =
nlinf (J7'A — 6)'J(J'A —6) — oinf (J7'A —0)'J(T'A — 6)] + 0,(1).
0eCy eCyr

Since C, and C, are positively homogeneous,

—2log \*(X) = oinf (z—0)J(z—0) — oinf (z—0)J(z— 8) + 0,(1),
eCy eCy

where z = v/nJ 4 and dwo () = N(0, J). The function infyc,(z — 6)’
J(z — 0) is certainly a continuous function of z. From the results of Mann and
Wald [2] it follows that the asymptotic distribution of —2 log M*(X) is pre-
cisely the distribution of

inf (z — 0)'J(z —60) — inf (z — 8)'J(z — 9)

feC, feCy
under the assumption that d(z) = N(0, J'). Referring to Section 3, we see that
this is precisely the result we seek.

ReMark. The final sentence of the introduction is a simple consequence of
this theorem, together with the obvious extension of Example 1 in Section 3,
the fact that nonsingular linear transformations transform hyperplanes into
hyperplanes, the nature of the positively homogeneous approximation of a set
bounded by a smooth surface, and the relation of A to A*,
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