ON THE ASYMPTOTIC EFFICIENCY OF CERTAIN
NONPARAMETRIC TWO-SAMPLE TESTS

By A. M. Moop
The RAND Corporation

1. Summary. In this paper the following asymptotic efficiencies are computed
for the given two-sample tests against normal alternatives to the null hy-
pothesis:

rank test for location............ ... ... . ... .. . ... .. ... 3/ =95%
median test for location. ... ......... e 2/ = 64%
run test for location......, ... ... ... .. . oL 0

run test for dispersion.................................. 0

square rank test for dispersion............... ... ........ 15/2n° = 76 %

Also, general expressions for means and variances of some of these test criteria
are found for distributions alternative to the null hypothesis.

2. Asymptotic power of a test. Let T, be a statistic which is a function of n
sample observations x; (with 2 = 1,2, --- , n) from a population with distribu-
tion F(x; 6). Let the mean of T, be p,(6) and the variance of T', be o%(6), and
suppose that T, is asymptotically normally distributed for all 8 in a neighbor-
hood of 6, . Let h,(8) be the power function of T, for testing the null hypothesis
that 8 = 6, . For large samples

1) ha(0) = Pl Tw — pn(60) | > kon(60)]
oy [P0 exp( ly — wa(6)]/26%(6))
@ m@=i- [

where k is determined by the chosen significance level « of the test.

We suppose further that u,(f) and its first two derivatives are of order one
in the neighborhood of 6, and that ¢,(0) and its first two derivatives are of order
1/4/n in the neighborhood of 8, . Then it is evident from (2) that h.(6) is es-
sentially unity except in a neighborhood of 6, ; of course h,(6o) = a. On evalu-
ating the first two derivatives of h,(6) at 6, one finds that the coefficient of the
term of order /7 vanishes in h»(6), so that it is of order one, and also that the
significant term of hy(6o) is of order n. Thus in the neighborhood of 8, we have
essentially (letting ¢ represent the normalized normal density function)

k¢(k)'<dun>2 )

3 h.(0) = - 0 — 6,

® n0) o+ 520 (S0e) 0 - )

when |8 — 6, | < 1/4/n. We are interested in (3) because it enables us to

evaluate the asymptotic efficiency of certain tests without having to evaluate
the variance of the test criterion under the alternative hypothesis. In fact, if
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T% with mean u% | variance %, and power h% is the best criterion for testing
6 = 6, , the asymptotic efficiency of T, is defined to be

L (dun\? 1 du:)2
@ 322 a7 (80) <d00) / an(00) <B—0; ’

the limiting ratio of h,(6) — « to h%() — a using (3). This definition is consistent
with Fisher’s definition of efficient estimators.
For one-sided tests h,(6) is essentially linear instead of parabolic,
¢(k) dun

in the neighborhood of 6, . Thus the ratio of h,(6) — a to hx(6) — ais the square
root of (4). For this reason (asymptotically) tests which are not 100 % efficient
are less unsatisfactory for one-sided tests than for two-sided tests. A more de-
tailed discussion of asymptotic efficiency will be published by Dwass [4]; see
also Levene [11] and Noether [13].

[In the application of (4) to the various statistics investigated in this paper,
we require something akin to asymptotic normality of the statistic, uniformly
in a neighborhood of the null hypothesis. Generally, as pointed out by a referee,
proofs existing in the literature of asymptotic normality do not provide this
strong a result and the validity of our computations is not completely justified.
However, a careful analysis of power functions by Andrews [1] shows how in
such cases the usual limiting distributions may be obtained for certain sequences
of alternatives to the null hypothesis. Within this framework, at least, the
computations are valid.]

In the evaluation of various nonparametric tests to follow, we shall refer to
normal distributions so that 7™ is well-known. In this sense, the results are
quite specialized. However, the intent of the computations is to furnish evidence
for a more general evaluation. The choice of the normal distribution puts the
nonparametric tests in competition with ¢ and F tests, which are known to be
most powerful for that distribution. If a nonparametric test looks bad relative
to the ¢ or F test (assuming normality), then one can observe only that the test
should not be used when there is assurance of sensible normality. However, a
nonparametric test which is found to be nearly 100 % efficient relative to the ¢
or F test has much to recommend it—not much is lost by using it even in the
case of normality and it is a reasonable presumption that the test will behave
approximately as well (as the ¢ or F test) for other distributions. Thus such a
test enables one to avoid the assumption of normality at negligible cost when
one has little knowledge of the shape of the population distribution.

On the other hand, one must expect that a nonparametric test which com-
pares favorably with the ¢ test, for example, assuming normal distributions,
probably will be unsatisfactory for distributions for which the ¢ test is known
to be poor.
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3. Median test for two samples. The median test [2], [18], [19] of whether two
populations have the same location (assuming they are otherwise the same)
consists of testing whether the number « of z observations to the left of the
joint median z of the two samples differs significantly from half the total num-
ber of = observations. This test applied to normal distributions with the same
variance will be shown in this section to have an asymptotic efficiency of 2/x;
hence it is of much less interest than the rank test (Section 5) in dealing with
essentially normal distributions.

We consider samples of m 2’s and n y’s from populations with distributions
F(x) and G(y), but to make an unessential simplification we suppose m -+ n =
2r 4 1. The joint distribution of » and z is then given by

H(u, 2) = mGT) (LIF@IL = FEI" @0 — G dF (@)

(6) m\ (n—1\ u M~y ~r—U n—r+u—1
+ n() (CIF @[ — FEI"'@ @I — G@)] G (2),

where the first term arises when z is an 2 observation and the second when 2
is a y observation. In this expression we put

@) u=mFc) +vVmv, z=c+ w/\'m,
where ¢ satisfies
®) mF(c) + nG(c) = (m + n)/2.

Then we use Stirling’s formula on the factorials, take logarithms, and neglect
terms of order 1/4/m in the usual fashion to find that » and w are asymptoti-
cally normally distributed. The quadratic form is found to be

v* [F(l‘l— 7t e G)] — 2w I:F(l £ 7 e G):l

+ 0| ol + i)

)

in which f and ¢ are the first derivatives of F and G, and all four functions are
evaluated at c¢; we must assume the derivatives do not vanish.

When F = @, the middle term of (9) vanishes so that » and w are independently
distributed and we easily find the variance of v to be n/4(m + =) under the
null hypothesis. The variance of u, when F = @, is thus mn/4(m + n).

Now we put ‘

(10) @) = o= ) = o O
Vor \2x ’
to compute the asymptotic efficiency for the normal case. We must first evalu-
ate, to use (4),
du _ d

(11) % = HmF@ = mf %’
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at ¢ = 0. There is no closed solution of (8) for ¢ in terms of £, but we are inter-
ested only in the neighborhood of £ = 0 where

n

m-+n

The value of (11) is then mn/+/2x(m + n). The asymptotic efficiency of the
median test for location for normal populations is therefore

mﬂ&+@&@$@my/mﬁdm@§=§

the same as given by Cochran [3] for the sign test.

£+ 0.

Cc =

(12)

4. Rank test for dispersion. Since the rank test (Section 5) is so successful
in testing for location differences, it is natural to inquire into the efficiency of a
rank test for dispersion. Let m observations from a population distributed by
F(z) and n observations from a population distributed by G(y) be ranked from
1 to m + n, and let W be the sum of squares of the deviations of the y ranks
from the average rank,

n 2
(13) W:Z(n_ﬁ"_"'l>,
i=1 2
where r; is the rank of the 7th (in order of magnitude) y observation. If the ’s
are dispersed relative to the y’s, W will be relatively small.
We first obtain the mean and variance of W when F = G by means of a
generating function which automatically performs certain required sums,
m+n

(14) ¢@x,w==11{yﬁ*”““”m-+xL

1=

The probability P(W) for a particular value of W is the coefficient of & in the

m—+n

coefficient of 2™y" divided by (»""). Let us denote m + n by s and the exponent
of t in (14) by ¢i . We now differentiate (14) with respect to ¢ to get

d¢ 8 C? ytcf—l s .
(15) 2= | X E I i + ).
=1 yt, + zd i=1
Putting ¢ = 1 we find the coefficient of ™y" in y(y + z)°™ 2 ¢/ (m) is
(16) E(W) = n(s 4+ 1)(s — 1)/12.

For the variance, differentiating (15) again with respect to £, putting ¢ = 1,
etc., we get:

EWOV — 1] = {0 ¢k — Xell + (X ) = Xeil}l/ )
= n(s 4+ 1){3m(3s° — 7) 4+ 5(s — 1)[s(s + 1)(n — 1) — 12]}/720.
From this, under the null hypothesis
(18) oy = ma(s 4+ 1)(s + 2)(s — 2)/180.
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Now it is necessary to obtain E(W) when F = G. We divide the z axis (on
which both populations are now assumed to range) into small intervals Az,
(@ = —w,.--0,1,2, -+ ) and suppose the distributions have densities
f(z) and g(z) so that the probability an x observation falls in Az, is Do =2 f(xa) Az, ,
where z, is in Az, . Similarly for y observations, Go =2 g(xo) A2, .

Let 7. be the number of z observations in Az, and j. be the number of y ob-
servations in Az, (the Az, are chosen sufficiently small that the probability of
more than one observation in a single interval is negligible). We let Az.,, denote
the interval which contains v, ; then the rank r, of Y is

(19) ro= =Z_w Ga + Ja).
Now let

B
(20) Jo = ds 20 (i + jo).

It is clear that Js = 0 if Az, does not contain a y, and is equal to the rank of Yy
if Az does contain a y. We have then

—

n

(21) =FE er—(m-{—n—i—l)§r¢+n(m+n+1)2/4]

1=

=E|2ZJi—m+n4+1)2J5 +nlm+n+ 1)2/4}
In terms of the p. and ¢,

.8 p—1
E(XJs) = lim D ngg 2 mp. + B(X j5)+ Xﬁ: 2 nln — 1)quge

Azy—0 B a=— a=—o0

(22)

It

mn [o F(z)g(x) dx + n + (3).

(X J5)

0 B8 2
lim Eﬂ_Z_j jﬁ[ > e+ j,,)]

Azy—0 a=—o0

It

B8 B8
1imE;j§ 20 2 Gatyd Gajy 4 juty + jujy)

a=—00 y=—

= lim E ﬂE 75 [M*Pa Dy + MPa by — MPa Py
@Y

+ mpaj'v + mpy ja + jaj'r]
= lim 2 {(n’papy + MPabday — mpa p)In’gE + nqs(l — gs))

B,y
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23 _
(23) + 2mp. [5,62n g5 + ngp) + 2V ¢y g5 + nP gy 4l

+ 100 gy @6 + 10 ¢a gy g5 + Sur(n ¥ qi i3 + 1V ga G
+ n®g% gs + 1P qags) + 2045207 qu gt + 1P qu qp)
+ 8ug 0y8(5n 0 g8 + T g3 + ngp) )

= nm? f F? dG + 3mnf FdG + 2n%m

f FG dG + (2n® + 3n° + n)/6.

Putting the final forms of (22) and (23) in (21) gives
E(W) = 0/12)B(s + 1)* = 6(n + D(s + 1) + 2(n + (20 + 1)]

(24)

—I-mn[(m— D [F a6+ 20~ 1) [ FGdG - (s — 2)deG:|.
We are now ready to compute the efficiency of W relative to the standard F

test using

(25) 0 = e o =15 (%).

We assume the asymptotic normality of W uniformly in a neighborhood of
¢ = 11in order to carry out the computation. In the sense of Hoeffding [5], WV is
a U statistic; hence Hoeffding’s general result on the asymptotic normality of
U statistics can be applied to W in just the same way as by Lehmann [9] in
establishing the normality of the rank test criterion for a fixed parameter value.
However, we need more than this and must refer to Andrews [1] for a rigorous
discussion of large sample power functions to justify such computations.

On substituting (25) in (24) and differentiating with respect to o, we obtain

dE(W) _
- da = mn

+ 2 — 1) fF (L @ — 1) dF(t)) i) — (s —2) f G — 1) FdF}.

{(m - 1) / (' — DF dF + 2(n — 1) f(x2 — F*dF
(26)

The third integral may be written (n - 1) f (' — 1)(1 — FHdI, so that

dB(W)
(27) do

Il

mn(s — 2) { f (@ — 1)F* dF — f G — 1) FdF}
= mn(s — 2) / 2r/3, ‘

using the evaluation of the integrals given by Jones [7].
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For the F test we have u*(¢) = 1/¢” and the variance under the null hypothe-
sis is o7 = 2(m + n)/mn. Substituting these results together with (18) and (27)
into (4), we find the asymptotic efficiency of W to be

(28) 180 ['mn(m + n):r / mn e _ 15

mnim + n)El 273 2(m + n) 272’
which is about 76 %. For one-sided tests, the square root of this figure is about
87 %.

6. Rank test for location. Van der Vaart [16] announced that the Wilcoxon
[20] test for location had an asymptotic efficiency of 3/7. However, Pitman [15]
seems to have priority'. Since there is no readily accessible derivation of this
result in print, it is perhaps worth a brief computation here. Using the same
notations as before, let U, the test criterion, be the number of times a y precedes
an z in an ordered sample of m 2’s and n y’s. Then

(29) U= JaZ'Lﬁ

=00

Iis expectation may be found easily by the method of the previous section. In
this case, however, the result is obtained immediately by Mann and Whitney
[12] to be

(30) B(U) = mn f [l — F(@)lg(z) da.

Under the null hypothesis, az) = mn(m + n + 1) / 12. On putting (10) in (30)
we find du/dt = —mn/2+/7. The asymptotic efﬁciency is

(31) mn(m —|1-2n T <2\f > Um + 1/n\d <d£> = 737

Lehmann and Stein [8] have shown that Pitman’s [14] randomization test is the
most powerful nonparametric test for normal alternatives. Its asymptotic ef-
ficiency is shown by Hoeffding [6] to be unity. Dwass [4] has shown that the
most powerful rank order test also has unit asymptotic efficiency.

6. Run test for location and dispersion. Pitman [15] found that the Wald
and Wolfowitz [17] run test has zero asymptotic efficiency for testing either
location or dispersion. These results may be computed at once by putting (10)
or (25) in Wolfowitz’s [21] expression for the expected total number of runs

/ ® 2mn f(x) g(x)
—wm f(x) + ng(x)

1 These results are given in lecture notes prepared for a course at Columbia University
given in 1948; several copies were distributed to various statisticians in the U.S. but no
other copies are available. The author borrowed a copy after being informed of its existence
by a referee.
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to find du/dg or du/ds. Then (4) may be used with the ¢ or F test for T% . In this
connection, I. R. Savage has raised a question about the proper use of the asymp-
totic normality of the run criterion; see Lehmann [10].

7. Lehmann’s rank test for dispersion. Another test for dispersion described
by Lehmann [9] consists of forming all the () positive differences between the
m observations on z and the (3) positive differences between the n observations
on y; the rank test is then applied to these differences. Let V be the number of
times z differences exceed y differences, and let the z and y populations have
densities f(z) and g(y). A tentative value of 27/4x" (about 68 %) has been com-
puted for the asymptotic efficiency of V relative to the standard F' test, using
methods analogous to those of Section 4.

However, V is not completely distribution-free; its distribution depends on
the form of f(z) even when f = ¢g. The mean is independent of the form

E(V|f=g) = mm — Daln — 1)/8,

but I have been unable to show that the variance of V or even the large sample
variance is independent of f(z). The calculation of the value 27/4n* used the
unproved assumption that the asymptotic variance is independent of f when
f = g, in that numerous eight-fold integrals were evaluated using the exponential
instead of the normal distribution.
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