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A NOTE ON SIMULTANEOUS CONFIDENCE INTERVALS

By MEYER Dwass

Northwestern University

Scheffé [1] and Bose and Roy [2] have recently given a method for making
confidence interval estimates useful in the analysis of variance. Here we show
that we can append to such a set of confidence interval estimates an additional
one on D, where D*/q" is the “distance function” which determines the power of
the analysis of variance test. For completeness, we first determine the same set
of simultaneous confidence intervals as in [1] and [2] in a simple way. This may
be of at least pedagogic interest.

LemMmA. Let xy, - , 2 stand for a point in k-dimensional Euclidean space.
The equations of the two planes normal to a vector a,, --- , a, and tangent to a
sphere of radius R centered at ¢, , - - , cx are given by

Z air; = Z aic; + R(Z a)’?, daxs = D, aic; — R(Y, a)?,

This is an elementary geometric fact which we will not prove.
The analysis of variance problem can be formulated in terms of

Yy = (yl, e )yﬂ))
a set of n independent, normal random variables, each with variance o*, and of
#1(y), - - -, #x(y), which are k independent random variables, each a linear func-
tionof y1, -+, y».Each #,,for7 = 1, - - - | k, is the linear estimate of minimum
variance of E4; = =; ; the variance of #; is ¢. Let ms” be independent of

A

cee &
™, y Tk

and distributed as the sum of squares of m independent N (0, ¢) random varia-
bles. The problem is to estimate or test hypotheses about 7, - - , mx or linear
combinations of them.

Let F, be a number such that (0, F,) includes 1 — « of the probability of the

F distribution with (k, m) d.f. Let C be a k-sphere centered at #,, --- , # with
radius (kF.s")"%. For a vector @ = ay, -+ , a , let Py(a) and Ps(a) be the two
planes which are normal to a and tangent to C. Then
k 2

_ (#: — ) <
(1) 1 a—Pr{;TzFa y
which is the probability that C covers the point 7, - -+ , m . This in turn is the
probability that =, -, m is located between Pi(a) and Ps(a) for all vectors
a. Thus

(2) 1l —a= Pr{Zafi‘ri - (kFaZ afsz)m é Z(lﬂri é Zaﬁ-i

+ (kF . ais")' for all vectors a}.
The last step follows from the lemma.
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We can characterize (2) as saying: Let # be the linear estimate of minimum
variance of w, which is a linear combination of m;, --- , m, and let #(x) be the
estimate of the variance of # based on s*. Then the confidence interval statements

# — WFHm]" S 7 < 4 + [kFH(0)]",
simultaneously for all , are correct with probability 1 — «. This result is con-
tained in [1] and [2].

The quantity D* = D} is a conventional measure of the “distance” of the
null hypothesis that = = --- = m = 0 from the true state of nature. The
power of the analysis of variance test depends only on D*/¢". Hence it would be
useful for the experimenter to obtain some information about D.

Making use of the triangle inequality, it follows from (1) that

1 —a £ Pr{(X #)"? — (kF.sH'"? £ D £ (3 #D"* + (kFas)'"}.

The quantity D #; = Qi is what the experimenter calculates as the “sum of
squares due to hypothesis.” Hence, instead of just making the statements about
the functions 7, we can make the simultaneous estimates

# — kF D))" £ o £ # + [kFH(x)], forall® = Y amr;,

Q@ — (bFas)"” = D < Qu + (FsH™,
with the probability of being correct equal to 1 — a.
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AN INEQUALITY ON POISSON PROBABILITIES

By HENRY TEICHER |

Purdue University

This note proves an inequality concerning the exponential series or Poisson
distribution, however one prefers to view the matter. Specifically, it will be shown
that if [A] is the greatest integer not exceeding A,

1SN Pant for all X = 0;
1) >

=211 3 for all integral x > 0.
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