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distribution, given Z, is continuous. We then replace ¢; by c;(%), where ¢;(Z) is,
say, the upper 1008 per cent point of the conditional distribution of Y given £.
From the sufficiency of % it follows that c;(%) is independent of 8, and the rest
of the proof follows through. Under similar circumstances the general theorem
proved earlier will remain true in the restricted class U* of all nonrandomized
unbiassed estimators of us .
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ON CONFIDENCE INTERVALS OF GIVEN LENGTH FOR THE MEAN OF
A NORMAL DISTRIBUTION WITH UNKNOWN VARIANCE
By LionenL Weiss!
Unaversity of Virginia
1. Summary. The problem of finding a confidence interval of preassigned

length and of more than a given confidence coefficient for the unknown mean of
a normal distribution with unknown variance is insoluble if the sample size used
is fixed before sampling starts. In this paper two-sample plans, with the size of
the second sample depending upon the observations in the first sample (as in
[1]), are discussed. Consideration is limited to those schemes which increase the
center of the final confidence interval by k if each observation is increased by k,
and for which the size of the second sample is a function only of the differences
among the observations in the first sample. Then it is shown that the mean of
all the observations taken should be used as the center of the final confidence
interval. Those schemes which make the size of the second sample a nondecreas-
ing function of the sample variance of the first sample are shown to have certain
desirable properties with respect to the distribution of the number of observa-
tions required to come to a decision.

2. Assumptions. We deal with an infinite sequence of independent and
identically distributed chance variables, (X;, X:, - - -). Each has a normal dis-
tribution with unknown mean x and unknown standard deviation o. A positive
integer n = 2 is given, and X, , ---, X, are observed. Then additional chance
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variables are observed to the number of N(X, — X;, X;— X,, ---,X, — X1).
This last expression is a measurable function of X; — X;, ---, X, — X;, which
we shall often abbreviate to N.

A fixed positive number A and a fixed 8, with 0 < 8 < 1, are given. We are
going to study schemes that yield a confidence interval for x of length A, and
of confidence coefficient greater than g, regardless of the value of o. We limit
consideration to schemes such that after the second sample has been taken,
the center of the final confidence interval is a function C(X,, ---, X., Xp11,

-, Xn4w) such that

‘C(X1+ky"')Xﬂ+N+k) = C(le "')Xﬂ+N)+k’

identically in k and in those values of X1, -+, X,,» for which we take a total
of n + N observations, for all values of N.

3. The optimum center of the final confidence interval. Once a function
N(X, — X1, -+, X, — X1) has been assigned, then the distribution of the
total sample size is determined. This distribution does not depend on u for the
class of schemes under consideration. Once we have chosen the function N, there
is still the problem of assigning the center of the confidence interval, which will
affect the confidence coefficient. (The confidence coefficient is a function of &
and of the function N, but not of u for the cases we are discussing.) We have

Lemma 3.1. For any given funclion N(X, — Xy, ---, X, — X)), setting the
center of the confidence interval at the mean of all the n + N observations taken
maximizes the confidence coeffictent uniformly in o.

Proor. The joint conditional density of X, ---, Xa, Xoy1, -+, Xoynm,
given that N(X; — X, -+, X, — X1) = m, is equal to

H(o) exp {—2 1+ (z: — w)’/24"}

in the region where N = m, and zero elsewhere. The exact form of H(s) is of
no concern to us. Denoting by X the mean of the values X, -+, Xpym, We
can write C(X;, -+, Xnym) 88 X + G(X1 — X, -++, Xnsm — X), where the
function G determines and is determined by the function C. A simple calculation
shows that choosing G(X; — X, --+, Xpym — X) identically equal to zero
maximizes

PIX4+G—30) <u<X+G+38)| (N =m)

with respect to the function G for any value of ¢, thus proving the lemma.

This calculation also shows that once we set X as the center of our confidence
interval, the conditional probability, given that N = m, of having our confi-
dence interval contain u when ¢ is the standard deviation is equal to

(1) @ [:Z exp {—(n + m)i*/25"} dt,

and does not depend on which function N(X, — X;, -+, X, — X)) is used.



350 LIONEL WEISS

We shall denote the quantity given in (1) by 8(c, m). We note that 8(s, m) is
increasing in m for any fixed o, and decreasing in o for any fixed m. For fixed
m, B(s, m) approaches unity as ¢ approaches zero.

4. Properties of a certain class of functions N(X, — X;, -+ , X, — X)).
We shall denote Y 7 (X; — X)? by S(X), with X standing for the generlc point
in (Xy, -+-, X,) space. The symbol P(R | ¢) stands for the probability of the
region R when the standard deviation has the value o. We have

Lemma 4.1. Given any function N(X, — X1, -+, X» — X1), any non-negative
tnleger m, and any positive value o', there exists a non-negative number d(c’, m)
such that

P[S(X) < d(e’,m)|d] 2 PIN(X; — X1, -, Xo — X)) S m|o]

. <
according to whether ¢ 5 o’

Proor. The two sets of values (X; — X1, -+-, X, — X)) and (X; — X, - -+,
X. — X) determine each other uniquely. The joint density of the second set is

pXe — X, -+, Xo— X) = (K/o"™") exp{—8(X)/24%}, K constant.

From thls, it follows easily that if oo < 01 < o3, then of all regions R in (X,
— X, -+, X, — X) space with P(R | o1) equal to a specified value, the region
of the form S8(X) < d, where d is a constant, minimizes P(R | o;) and maximizes
P(R | g9). This proves the lemma.

5. Optimum properties of a certain class of procedures for setting the size of
the second sample. For any sample-size rule R, g(m, o, R) denotes the probability
that the size of the second sample will be m when the standard deviation is ¢
and R is used, while G(m, o, R) denotes the probability that the size of the sec-
ond sample will not exceed m under the same circumstances. Let

Thus B(e, R) is the confidence coefficient when R is used and ¢ is the standard
deviation.

We shall say that a rule T setting the size of the second sample is of type S
if it assigns size m to precisely those points X = (Xi, ---, X,) for which

am—l(T) < S(.X) am(T) m = 0) 11 2)- B}
where a_i(T), ao(T), - - - are preassigned numbers such that 0 = a_i(T) =<
ao(T) = ai(T) = --- . It is clear that for any rule T of type &, if for some posi-

tive ¢ we have G(m, o, T') approaching unity as m increases, then this happens
for all o.

Lemwma 5.1. If T is a sample-size rule of type S such that for any finite o there is a
finite positive integer s(a, T) such that ble, s(a, T), T] > B, then for any o’ there is a
finite positive integer N (o', T') such that ble, N(o’/, T), T] > Bforallec < o

Proor. From continuity considerations, it is easily seen that for any ¢ in the
interval (0, o'}, if bls, s(e, T), T] > B then ¢ is in the interior of a nondegenerate
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interval such that for any ¢” in the interval, b[o”, s(a, T), T] > B. By the Heine-
Borel theorem, a finite number of such intervals can be found to cover the inter-
val [3, ¢'] for any positive 8. This proves the lemma, since a neighborhood of
zero causes no trouble.

TuroreM 5.1. Given any sample-size rule R such that G(m, o, R) approaches
unity as m increases for any value of o, and B(s, R) > B8 for all o, there is a rule
R’ of type S, with B(s, R') = B for all o, such that for any o there is a nonnegative
fintte integer M (o) so that

G(m, o, R') = G(m, o, R), for all m > M(o).

Proor. For the sake of definiteness, if T' is any rule of type S, we shall under-
stand that N(¢’, T) is the smallest positive integer such that bls, N[o’, T1, T] >
Bforalle = ¢'.

Let o9 be the value of ¢ which is the solution to (s, 0) = B. Let § denote a
fixed positive number, and o; denote oo + 75, for ¢ = 1, 2, --- . Let Ry be the
uniquely determined rule of type S such that g(m, oo, Ro) = g(m, oo, R) for
all m. From the definition of oy, for any ¢ < ¢ there is a finite integer s(o, Ro)
defined in Lemma 5.1.

Also, by Lemma 4.1, G(m, o, Ry) < G(m, o, R) for all ¢ > o9 and for all m.
This fact and the assumptions about R imply that for each ¢ > oy there is a
finite s(e, R). We define N; as the larger of 1 or N(o1, Ro). By Lemma 5.1, N;
is finite.

Next we define another rule R, of type S, as follows. Take a;(R;) = a:(R,) for
t=—1, .-+, N+ 1, while a;(R,) forz > N + 1is chosen so that G(¢, 01, R1) =
G(%, o1, R). This is possible, since G(N1 + 2, a1, R) = G(N1 + 2, o1, Ry). It is
clear that for any ¢ < o, there is a finite s(o, R;). Also, by Lemma 4.1, G(m, o,
R,) £ G(m, o, R) for any ¢ > oy . This implies that for any ¢ > o1, there is a
finite s(o, R1). Now we can define the finite number N, as the larger of N; 4+ 1 or
N (0’2 5 Rl).

Next we define a rule R, of type 8, as follows. Take a;(R;) = a;(R;) for i =
—-1,0, -+, N2 + 1, while a;(R,) for £ > N, + 1is chosen so that G(z, o5, R;) =
G(i, o2, R). By the same reasoning as above, we see that this is possible, and
that we can define a finite N (o3, Rz). Then we define N; as the larger of N, + 1
or N(oz, Ry).

In general, once having defined the rule R; of type S, we define a rule R,
of type 8, as follows. Take a:(R;11) = ai(R;) fori = —1, ---, Nj;; -+ 1, while
a;(R;q1) for ¢ > Njy + 1 is chosen so that G(Z, 0j11, RBjp1) = GG, oj41, R).
Then we define N, as the larger of N1 + 1 or N(oj42, Rj41), and proceed as
above.

Clearly, for any fixed ¢, lim,, a;(R;) exists. As a matter of fact, above a cer-
tain j, a;(R;) remains constant. Finally, we define a rule R’ of type S by a.(R’)
= lim;,, ai(R;). Foreachj, B(s, R;) > B for any ¢. Therefore, it is clear from
continuity considerations that for any o, B(s, R’) = B. Also, for any given ¢,
there is a k so that ¢’ < o .
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Let m be any integer greater than N, + 1. Then there is a nonnegative in-
teger j so that Nvy; + 1 < m = Niyjp1 + 1. Then for all o, G(m, o, Ritjs1)
= G(m, o, R'). Also, G(m, oiy;, Riy;) = G(m, o1y;, R). Therefore by Lemma
4.1, G(m, o', Riy;) Z G(m, o/, R). Now by construction, G(m, o, Ritj+1)
= G(m, o, Riy;), for all o. From these relations, we deduce that G(m, o', R’ )
2 G(m, o', R).This proves the theorem, for M(¢’) can be taken as N + 1.
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