ON MOMENTS OF ORDER STATISTICS FROM THE WEIBULL
DISTRIBUTION
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Summary. This note expresses the first two moments of the order statistics in
samples from the Weibull distribution (sometimes referred to as the ‘“third”
asymptotic distribution of extreme values) in terms of known (incomplete B
and T) functions. A similar procedure is applied to the ‘“second” asymptotic dis-
tribution of extreme values.

1. Introduction. Explicit formulas in terms of a certain tabulated function
were derived in an earlier paper [1] for the moments of order statistics for the
“first” asymptotic distribution of largest values, with cdf

(1.1) F(z) = exp (—e™?), y=(@&—w/B — o<z o»n,

This note extends the procedure to the other two asymptotic forms. However,
the distributions for smallest rather than largest values are considered, with a
view to possible application to breaking strength and fatigue problems. Without
loss in generality for our purposes, the two other distributions may be taken
(see [3]) as having cdf’s

1 - — (=)™ =<
1.2) o) = { exp [— (—2)™"], z =0,

1, z > 0;

0, z =0,
(1.3) H(z) =

{1 — €Xp (___xm)’ z > 0.

The parameter m is positive. These distributions are designated, respectively,
the second and third asymptotic types (for smallest values). The distribution
(1.3) has been applied extensively, mainly by Weibull {5], [6], [7], [8] and will
be referred to by his name.

2. General approach. The main point of difficulty is in evaluating the double
integrals that occur in the covariances, the means presenting little difficulty.
It is interesting to proceed generally and try to discover other distributions for
which the technique introduced in [1] will work.

If P(z) is the cdf of the parent population, and p(z) is the corresponding df,
then the joint df of the 7th and jth order statistics from P(z) is [9]

@21) p, yv) = KP@I'[Ply) — P@Y 1 — PQI" 'p@)p),

— o <z =2y < o,
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where K = K(n, ¢, 5) = nl/[G — D! (G—7— 1! (n — 7)) and z = z; and
y =2x;,with¢ < j.

If in (2.1) we write P(y) — P(z) = [1 — P(z)] — [1 — P(y)], the covariances
may be expressed in terms of integrals of the forms

[” [” zy [P()] 1 — P@)]* p(z) p(y) dz dy,
(22) o
[ [ st - Py (a3 p) p) d ay.

Leaving aside simple cases such as the rectangular distribution P(z) = =z,
parabolic distributions P(z) = z*, and perhaps other simple forms for which
the evaluation procedure in [1] is unnecessary, it will be seen on trial that sue-
cess in using this procedure depends upon having P(z) or 1 — P(z) of the form
¢*®, where Q is a reasonably simple function. Since P(z) and 1 — P(x) are non-
negative, this is always possible with real Q(z). -

The integral (2.2) is then a (finite) linear combination of integrals of the form

o) = [ [ e ga) @) do ay.

Here ¢t and u are not necessarily the same as in (2.2).
To determine @, we carry out the procedure as far as possible. The first step,
integration by parts, gives

© 0 Ay .
\(/(t, u) — Zl"[ ye(H’u) Qy) Q/(y) dy — ;-_‘[ [ yetQ(a:)-l'uQ(zl) Ql(y) dz dy.

Calling the double integral y:(¢, ), the second step, differentiating with respect
to ¢, gives

a‘ﬁlgtg ) - ‘[w j;m y Qz) Q'(y) ete(z)-i-uo(u) dz dy.

This can be evaluated in two cases, (i) when the inner integral can be evaluated
as it stands, and (ii) when the double integral is, apart from a constant factor,
precisely of the form y(, w).

In case (i), we need to have Q(z) = c¢Q’(x), whence Q(z) = ae’, which makes
either P(z) or 1 — P(z) doubly exponential. That is, we have the first asymp-
totic form for smallest values, 1 — exp (—¢). The simple transformation z =
—2z' converts this into the distribution of largest values, P(z) = exp (—e ™),

. previously considered [1]. Thus this case has, essentially, already been treated.

Case (ii) requires that 2Q’(x) = cQ(z), so that Q(z) = ax’ (which, of course,
includes the exponential distribution). This gives, essentially, just the two .
forms (1.2) and (1.3).:

It is rather interesting that the three asymptotic distributions of extreme
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values thus seemingly exhaust the possibilities for the method introduced in con-
nection with one of them.

3. Results. The Weibull distribution (1.3) is of chief interest. The method in
case (ii) applied to (2.1) and (2.2) for this distribution yields a simple first order
differential equation in ¢ (¢, u) whose solution is given by

t
£t u) — w Y (u, ) = 771%.2 I'(2 + 2/m) f £+ w7 .

The function ¢(u, «) is readily evaluated and the integral may be expressed in
terms of the B-function by the change of variable t = uw / (1 — w). The final
expression for ¢ (¢, u) is

@3.1) ¥(t, w) = m~(tw)™ T(2r) By(r, ),
r=14+1/m; p=t/¢+ w); mitu>0.

For given n, the values of ¥ are needed only for { + 4 < n. To cut the calcula-
tions in half, we can use the relation

¥t u) + ‘I’(u, ) = m—z(tu)‘_r T'(2r) [Bp(r1 r) + Bl—?(ry 7))
= m~(tu)""T(r).

The above values enable us to write down the results for the Weibull dis-
tribution (1.3) as

1—1

n! k Byi—1
E@) = e —pro s z.)11‘(1 +ﬁ)"§0(—1) ci

4 p—a 1)

m>0; ¢=12---,n; £=0,1,2---;
(3:2)

i1 j—i—1

E(ziz;) = m'K 2_; Z.‘, (=)0 G — i+ u = v,
pu=0 r=

n—j+v+1),
m>01 7’<j7 1’7.7= 112)”' y M.

Here K is as in (2.1), and the function ¢ is given by (3.1).
For the second asymptotic distribution (1.2), the results are similar and may
be obtained with little difficulty. The function corresponding to ¢ is

¥, w) = w7 T [T0) — T@)By(, ), v =1—1/m,

3.3)
p=1t/t+u), m>2 tu>0.
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The resulting moments are then

n! & etk yi—1
E(x?)_—_(z’—-l)!(n-i)IP( )Z( R

p=0

.(n + w - i + 1)—l+klm

m>0; 1=1,2-.---,n k<m; £k=01,2, -
(34)

i—1 j—i—1

E(xtx,) = sz Z (_ )I"‘v ‘—10,_._1

p=0 »=0 .
Y —j+rv+1, j—it+p—0),
m>2; 1:<j; i:j)=1:27"'1n
Here K is as in (2.1), and ¢* is given by (3.3).

4. Remarks on application. The present results can be used in cases where m
is known, perhaps from previous work. One important application of moments of
order statistics is in finding minimum-variance unbiased estimators by means of
linear functions of such statistics. An illustration of this for the case of the first
asymptotic distribution will be found in [2], Appendix C. If m is not known, then
there is available [4] a simple graphical procedure for obtaining an estimate
which could then be used in the above formulas for first approximations.
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