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CALCULATION OF EXACT SAMPLING DISTRIBUTION OF RANGES
FROM A DISCRETE POPULATION!

By Irvine W. BuUgrr

Purdue University

1. Introduction. The exact sampling distribution for ranges is known for but
few populations, and general information on moments of the range is incomplete.
This note gives a method for calculating the exact sampling distribution for
discrete universes having a finite range and approximating those for populations
with an infinite range. ‘

2. Derivation. Consider a random variable X defined on integers a to b,
both finite. Let p; be the probability that X is ¢, and p(R) be the probability
that the range takes the value R. Then for a sample of n X’s from the popula-
tion (drawn with replacement) we have

b—R n—1 n—r

1) pB) =2 3 5 —MPiPiur 4 )™

ima r=1 s=17!s5! ('n bl 8)!

since the summand contains at least one X at 7 and at least one X at ¢ + R
and those X’s not at these values are all between, and the summation is over all
possible such samples. To obtain a more useful form we let

i+R

(2) M@, R) = Z:l ;.

Then
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b—R

= Z [terms of M™"(z, R) containing at least one ¢ and at least one ¢ + R].

To get the desired terms of M"(z, R), we first subtract from it all of those terms
which fail to contain any 7 + R, namely, M"(z, R — 1). Then we also subtract
off those which fail to contain any ¢, namely M"(: + 1, R — 1). But these two
expressions overlap to the extent of M"(z + 1, B — 2), that is, terms with
neither 7 nor ¢ + R. So this must be added back on. Thus we have

b—R .
) p(R) = 2 [M"G,R) — M"(, B — 1)

-M(G+1L,R—-1)+ MG+ 1,R—2).
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. To systematize calculation, another form is desirable. Let

b—R—1
@ Cr= 2, M"G,R),
t==a+1
5) Ezx = M"(a,R) + M"(b — R, R).

Then we have
(6) P(R) =Cr+ Er — 2Cpy — Epy+ Cro.

Formulas (3) and (6) are appropriately modified for R = 0,1,b — a — 1, and
b — a.

3. Calculation. In computing the p(R), the universe probabilities can best be
listed as integer frequencies, as small as possible. Then sums of consecutive
frequencies, two at a time, three at a time, etc., are formed, the resulting table
being of the same form as a table of differences. Then the C; and E, are found
by forming sums of nth powers of these table entries. The appropriate modifica-
tions of (6) are made by omitting terms naturally absent from this table.

4. An Example. Formula (6) enables us to study the effect on ranges of non-
normality in the population. Thus we may compare the following two distribu-
tions: One a discrete distribution with probabilities approximately proportional
to normal curve areas and the other approximately proportional to those of a
well-skewed Pearson Type III.

X 0 1 2 3 4 5 6 7 8 9 10 11
) Z W .005 .015 .050 .115 .195 .240 .195 .115 .050 .015 .005 .000
Soooiiiiiiii .01 .13 .22 .21 .17 .11 .07 .04 .02 .01 .00 .01

The respective characteristics are
g = 5.00 o =171 a; =0 as = 3.02
uw = 345 o = 1.99 a; = .99 as = 4.21

The respective distributions of range n = 5 are the following:

R 0 1 2 3 4 5 6 7 8 9 10 11
pR). ... .001 .031 .146 .239 .251 .179 .096 .040 .013 .003 .0005
p(R)........ .001 .028 .114 .203 .221 .180 .117 .063 .030 .020 .020 .002

The characteristics are respectively
pr = 3.93 or = 1.53 a; = 41 ay = 3.01
ur = 4.44 or = 1.94 oy = .73 oy = 3.47

It can be seen that there is much less difference in skewness in the distributions
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of R than in the original populations. The R distributions are in fact quite
similar if allowance is made for the difference in population standard deviations.
Hence we can have quite a bit of confidence in using normal curve constants
when making control charts for ranges for moderately skewed populations
and small sample sizes.

—

THE STOCHASTIC CONVERGENCE OF A FUNCTION OF SAMPLE
SUCCESSIVE DIFFERENCES!

By LioNeL WEiss
University of Virginia

1. Summary and introduction. Let f(z) be a bounded density function over
the finite interval [A, B] with at most a finite number of discontinuities. Let
X1, X», -+, X, be independent chance variables each with the density f(z).
Define ¥, < Y; < --- < Y, as the ordered values of X,, X,, -+, X,, and
Tias Yip1 — Yi. Also define R, () as the proportion of the variates T, , - - - , T,y
not greater than ¢/ (n — 1). We shall denote [I — [% f(x)e™”® dz] by S(t),
and sup:zo |R.(t) — S(¢)| by V(n). Then it isshown that as n increases, V(n)
converges stochastically to zero. The relation of this result to other results is
discussed.

2. Proof of the stochastic convergence of V(n) to zero.

Lemma 1. If for each given t, R.(¢) converges stochastically to S(t) as n increases,
then V(n) converges stochastically to zero.

Proor. We must show that for any given positive numbers e and 3, there is a
positive integer N (e, 8) such that if n > N(e, 8), then P[V(n) < ¢ > 1 — .
We can find a finite set of values &, < , < --- < ¢, such that

S(te) < Ze, 1 — S@t) < i S(tiv1) — St:) < e,
i=01--+,8— 1.
Also, by the hypothesis of the lemma and other familiar considerations, we can
find a positive integer, say N (e, 8), such that if n > N(e, 5),

Pl|R.(t:) — S(t:)| < 3¢ for ¢ =0,---,8 >1— 5.
But then the lemma is proved, for it is easily verified that if |[R.(t;) — S(¢;)| < e

simultaneously for ¢ = 0, --- | s, then |R.({) — S(f)] < e simultaneously for
allt = 0.
LeEmMA 2. Let X, , - -+, X, be independent chance variables each with a uniform

distribution on [0, 1]. Let M denote the number of these variables falling in the closed
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