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Summary and introduction. The problem of estimating the parameters of the
Pearson Type III probability density function (p.d.f.)

0=t

o(t, @) = af(at) = [T(p)] 7", 0<a
0<p

assuming various forms of truncation has been considered recently by A. C.
Cohen, Jr. [2], Des Raj [4] and others. In this paper we obtain maximum likeli-
hood estimates of the parameter « when p is known apriori. Truncation is at a
known point 7' > 0.

Four cases are considered: truncation to the right of 7 with the number of
observations in the region of truncation (1) known, and (2) not known; and
truncation to the left of 7' with the number of observations in the region of
truncation (3) known, and (4) not known. The information lost in not knowing
the number of observations in the regions of truncation is measured in terms of
the R. A. Fisher indices of information.

The study of cases (2), and hence of case (1), is an outgrowth of the author’s
experience with a life testing program from which, unfortunately, data had been
recorded only for those specimens which failed within 100 hours of testing. De-
spite this anomaly of experimental design a maximum likelihood estimate of «
was found to exist. The analysis proceeded on the assumption of an exponential
failure law (p = 1).

Another instance of case (2) arises naturally in connection with the distribution
of population in urban communities. Colin Clark [1] has found urban population
density, as a function of radial distance from city center, to be adequately de-
scribed by the Pearson Type III p.d.f. with p = 2. The maximum likelihood
estimate of the unspecified parameter, «, for cities with circular peripheries, is
contained in Section 2.

Cases (3) and (4) are included for the sake of completeness. A possible area of
application is-to be found in the field of telemetry where frequently the result of
a random experiment is measured by an instrument which responds only to
inputs in excess of a fixed magnitude.

1. Number of observations to the right of 7" known. Suppose we have a ran-
dom sample of size N from the Pearson Type III distribution with known p.
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Suppose further that N — n observations are known only to be greater than
T > 0 while the actual values, & < T, of the remaining n observations are given.

The likelihood function of the sample is then
1 — Fla)” forn =0

(1.1) L(t,, n) = n
(b, m) <g) 1 — Fla)]™™ kgl [af(atr)] forn >0

where 0 £ ¢, < T and F(z) = / f(z) dz. Without loss of generality we take
0

T = 1. Obviously, for n = 0, L(tx , n) is decreasing in «. For n > 0, we obtain

(12 208l nipra — (YoMt — 1,
where = 1/n(2 1 &) and where Z(a) = f(a)[l — F(a)]™ is the reciprocal
of Mills’ ratio for the Pearson Type III distribution. The maximum likelihood
estimate of a, say &, is thus the unique solution of f = o '[p — (N — n)/n)aZ(a)].
The uniqueness and existence of & are established using the result, shown by the
author in an unpublished paper [3], that aZ(e) is increasing with range (0, ) for
all p > 0. Thus, since both o and [p — ((N — n)/n)aZ(a)] are decreasing, the
right-hand side of the last equation has a unique zero (except, of course, when
n = N) for some ap > 0 and is decreasing with range (0, ©) for0 < a < ap.

2. Number of observations to the right of 7 not known. When only # is known
we are led to consider the likelihood function

2.1) L*t | n) = [F(a)]-"kI:I1 laf(ety)], 0<t <1
from which we obtain
2.2) 1o L7 _ ip/a — W(a) — 1]

E ’

where W(a) = f(a)[F(a)]”". The maximum likelihood estimate of a, say a*,
is thus a solution of I = p/a — W(a).

The pertinent properties of [p/a — W(a)] are readily established by consider-
ing the random variable ¢ with p.d.f.

(23) g(t:a) = af(a))[F ()], 0=¢=1

We find that E(¢) = p/a — W(a) and that Var (¢§) = —93E(¢)/da > 0. Hence,
E(¢) is decreasing in & and the uniqueness of o* is assured. (We note that o* is
obtained also by the method of moments). The range of E(£) may be established
by determining its limits from the equivalent expression

(24) E@) = p/a — W(a) = I: _/; " e dx] [a j; “ g dx]_l'



PARAMETER ESTIMATION 661

Obviously, lim,.., E(¢) = 0. To determine its limit as « approaches zero, we ap-
ply L’Hospital’s rule twice obtaining

(2.5) lim E@®) = + 1

This latter result, (2.5), introduces an interesting complication since0 < 7 < 1
and Pt = p/(p + 1)) > 0. Thus ¢ = E(¢) appears to have no solution for
t 2 p/(p + 1). However, if we interpret L*(# | n) to be the likelihood function
associated with the random variable £ introduced above and then complete the
family of p.d.f.’s (2.3), by adjoining

IA

¢

IIA

(2.6) g(t:0) = lim g(t:a) = p ¢, 0 1,
a—0

the likelihood function, L*(#: | n), is seen to be maximized for = p/(p + 1) by
a = 0.

3. Number of observations to the left of 7" known. In the event that N — n
observations are known only to be less than 7 while the actual values, & = T,
of the remaining n observations are given, we seek to maximize (again taking
T = 1),

[ [F(a)¥ forn =0
3. S(t , = n
®.1) (b, m) (g ) (@1~ 1T laf(ete) forn > 0

with &y = 1. For n = 0, S(t, n) is increasing in «. For n > 0 we obtain

o1

which has a unique zero since, for all p > 0, W(a) is decreasing and
limgaw W(a) = 0, [3].

9 log S/da = n[ /a-l-<

4. Number of observations to the left of 7' not known. Knowing only the values
of the n observations, t, = T, we are required to consider the likelihood function

(41) §4e | m) = 11 = P I lef(at), bz 1
from which we obtain
(4.2) 2108 5% — nip/e + 2a) - 1

That (4.2) has a unique zero is established in a manner analogous to that of
Section 2. Consider a random variable 5 with p.d.f.

(4.3) h(t:a) = af(at)[l — F(a)]7, t

v
—
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Then E(y) = p/a + Z(a), and Var (9) = —0E(n)/da > 0. That is, E(y) is a
decreasing function of « with range (1, ©), (lim,.. Z(a) = 1, [3]). Hence,
since { = 1, (4.2) has a unique zero.

6. Concerning information losses. The likelihood function, L*(# | n), of Sec-
tion 2 admits two interpretations. In one instance (urban population density)
it is the likelihood function of the random variable ¢ with p.d.f., (2.4). In another
instance (anomalous experimental design) it is a “conditional” likelihood func-
tion of L(t, n):

61D L, = (N

n) [l — F@IF@PL*G [ n), 0SS 1.

It is this latter instance which involves loss of information and with which we are
concerned in this section.

The information lost in not knowing N may conveniently be measured in
terms of R. A. Fisher indices of information. A measure which suggests itself
and which is adequate for our purposes is

_ [ log L* _ 9’log L]
(52) J(I) = E[ o log

where the expectation is with respect to the p.d.f., L( , n). The analog of (5.2),
J(S), measures the information loss in the case of truncation on the left. Our
only justification for employing the difference of the R. A. Fisher indices rather
than, say, their ratio rests with the nature of the results obtained.

Denoting — E(9* log L/da”) and — E(d* log L*/da%) by I(L) and I(L*) respec-
tively and differentiating (1.2) and (2.2) with respect to «, we obtain

I(L) = (p/o")E(n) 4 Z'(2)E(N — n) = Np/'F(a) + Z'(a)(1 — F())],
and
I(L*) = [p/o’ + W'()]E(n) = Nip/a® + W'(a)]F(a).
Hence
J(L) = N[Z'()(1 — F(a)) — W'(2)F(a)] = NW(a)Z(a).
Similarly
I(8) = Nlp/o*(1 = F(a)) — W'(a)F(a)],
I(8%) = Nip/a' — Z'(2)]l1 = F(a)],

so that J(8) = NW(a)Z(a), and we see that our measure of information loss in
not knowing the number of observations in the tail is independent of whether
truncation is on the right or on the left.

Finally, we recall that the information index associated with a random sample
of size N from the Pearson Type III distribution is Np/o’. Our intuition suggests
that we should have I(L) + I(S*) = I(L*) + I(S) = Np/a’, which is easily
seen to obtain.
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