NOTES

ON THE DISTRIBUTION OF THE LIKELIHOOD RATIO

By Rosert V. HoGga

State University of Iowa

1. Summary. In an investigation of the distribution of the likelihood ratio
A, Wilks [3] proved, under certain regularity conditions, that —2 In A is, except
for terms of order 1/4/7, distributed like x* with & — m degrees of freedom, where
k is the dimension of the parameter space Q@ of admissible hypotheses and m is
the dimension of the parameter space w of null hypotheses. In this paper, we
consider the nonregular densities investigated by R. C. Davis [1] and show that
for certain hypotheses —2 In A has an exact x’-distribution with 2(k — m)
degrees of freedom.

2. A lemma. We find it convenient to prove the following lemma first.
LemMA. Let the k independent random variables,w; , ws , « + - , Wy , have the joint
density function

k

I]; (niw?*™), 0<w <1
Let u = “aw? and v = u/s", where s = max (w1, ws, -+- , wy) and n =
S iani. Then —2 In u and —2 In v have x’-distributions with 2k and 2(k — 1)
degrees of freedom, respectively.

Proor. Obviously wi* has the density 1, 0 < w* < 1; thus, —2 Inw;* hasa
x -distribution with 2 degrees of freedom. Since —2 In u is the sum of k inde-
pendent x* variables, each with 2 degrees of freedom, then —2 In % has a x*-
distribution with 2k degrees of freedom. This completes the proof of the first
part of the lemma.

We note that s has the density 1, 0 < s < 1. Thus, —2 In s” has a ’-
distribution, with 2 degrees of freedom. We can show as follows that v and s
are stochastically independent. Let us introduce the parameter b in the joint
density:

=1

. ,
<H n,.w:-'-’—‘> / b, 0<w <b.

The variable s is the sufficient statistic for b, and its density ns"™ / b", 0 < s <
b, is complete. The distribution of the ratio v is obviously free of the parameter
b. These facts imply, by use of an extension of a theorem of Neyman [2], that
v and s are stochastically independent. Since we can write —2 In 4 = —2 In
v — 2 1In s", we find that —2 In v has a x’-distribution with 2(k — 1) degrees
of freedom.
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3. One extremity of the range depending on 0. Let x possess the probability
density function

. _ ]Q(8) P(z), a =z = b(0),

flz; 6) = {O, elsewhere,

where P(z) is a real single-valued positive continuous function of x defined
almost everywhere and b(6) is a strictly monotone continuous function of 6
for some interval of values of 6. Of course,

b(6)
& Ceert = [ P@ ds;

thus, Q(6) is a strictly monotone continuous function of 9. Consider the k, & =
1,2, 3, --- , mutually independent populations having the densities f(x; 6.),
1=1,23,.--, k. We test, by use of the likelihood ratio A\, the hypothesis

0 =0, = --- = 0, = 6, where 6 is some specified value, against all possible
alternatives. Let n,, ny, -+, m; be the sample sizes and let 21, 22, -+, %
be respectively the largest items in the several samples. Thus, t; = b (2.,
t=1,2, .-k, is the maximum likelihood estimate of 8; and hence
2}
A = Qk(eo) )
Hx: Q)™

By using (1),

x =11 ( [ "6 Pw) dx>"‘.

T

If the null hypothesis is true,
w; = [ Q(oo) P (IIJ) dz

is distributed like the largest item of a sample from a uniform density with
domain zero to one; that is, w; has the density navf*™, 0 < w; < 1. So, by
use of the lemma, —2 In X has a x’-distribution with 2k degrees of freedom.

We now take &k greater than one and test, by use of the likelihood ratio A,
the hypothesis 6, = 6, = --- = 6, against all possible alternatives. Here,

Q)
A= F ’
HQ(ti)"‘

=1

where ¢; = b7'(z;), 2 = max(2;, 22, *++ , %), and t = b"(2). Hence,

o [ [[e@ P& ax\"
=10 ————) .

[ "060) P(2) dz
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If the null hypothesis is true and if 6 represents that common, but unknown,
value of the parameter, we argue, by using the lemma, that —2 In X has a x*-
distribution with 2(k — 1) degrees of freedom.

4. Both extremities of the range depending on 6. Let = possess the probability
density function

. — Q(0) P(x)’ 6=sz= b(0),
fa; 0) = {O, elsewhere,

where P(z) is a real single-valued positive continuous function of « defined almost
everywhere and b() is a strictly monotone decreasing continuous function of 8
for some interval of values of 6. Again,

b0

@) QO = [ P dx;

80 Q(6) is a strictly monotone increasing continuous function of 8. Consider the
k, £ =1,2, 3, .-, mutually independent populations having the densities
flx; 65), 1=1,2, .-,k We test, by use of the likelihood ratio A, the hypothe-

sis 6 = 6, = +-- = 6, = 6y, where 6 is some specified value, against all possible
alternatives. Let n;, na, - -+, nx be the sample sizes. Let 41, 2, -+, ¥ and
21, 22, *+*, 2 be respectively the smallest and largest items in the samples.

Therefore, t; = min{y;, b(2)}, ¢ = 1,2, -+, k, is the maximum likelihoad
estimate of 6; and hence

)

:

\ = %(00)' ,
H Q)™

faml

or

V=11

te=l

f " Q6P dx)m :

t
If the null hypothesis is true, we observe that
Plt; =z 1] = Ply; = r,z < b(r)],

- ( / " Q)Pw) dx)"‘ .

wit = <f:(m Q(00) P(z) dx>m

has a uniform density over (0, 1), or w; has the density naw?*™, 0 < w; < 1.
Thus, according to the lemma, —2 In A has a x*-distribution with 2k degrees of
freedom. Similarly, if we require k to be greater than one, we can show that if
A is the likelihood ratio for the hypothesis 6, = 6, = -+ = 6;, then —2 In
X has a x’-distribution with 2(k — 1) degrees of freedom when the null hypothesis
is true.

Hence,
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In the cases presented above, the dimension, m, of the parameter space w
of the null hypothesis is either 0 or 1. This can be extended somewhat. If the
null hypothesis is that the ¢’s fall into m equal sets, —2 In X is distributed as
x> with 2(k — m) degrees of freedom provided the null hypothesis is true. For
example, suppose k = 6 and that we test the hypothesis 6, = 6, = 6; = 6, and
05 = 05 against all possible alternatives. Then —2 In A has a x’-distribution with
2(6 — 2) = 8 degrees of freedom.
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AN APPLICATION OF CHUNG’S LEMMA TO THE KIEFER-WOLFOWITZ
STOCHASTIC APPROXIMATION PROCEDURE!

By Cyrus DERMAN®

Syracuse University

1. Summary. Let M (z) be a strictly increasing regression function for z < 6,
and strictly decreasing regression function for x > 4. Under conditions 1, 2,
and 3 given below, the stochastic approximation procedure proposed by Kiefer
and Wolfowitz [3] is shown to converge stochastically to 8. Under the additional
conditions 4, 5, 6 given below, the procedure is shown to converge in distribution
to the normal distribution. Our method is the one used by Chung [2].

2. Introduction. Let H(y |z) be a family of distribution functions which
depend on the parameter z and let M(z) = [Z, y dH(y | z). Suppose M (z) is
strictly increasing for z < 6, and strictly decreasing for z > 6. Let {a,} and
{c.} be sequences of positive numbers such that

Cn —™ 0, Za,. = o, Zancn < o, Zaiczz < «©,

Kiefer and Wolfowitz [3] suggested a recursive scheme for estimating 6 which
is as follows. Let z; be an arbitrary real number. For all positive integral n,

(1) Zn+1 = Zn '+' gﬁ (y2n - y2n-—l),

where 92,1 and ¥z, are independent chance variables with respective distribu-
tions H(y | 2, + ¢.) and H(y |2, — c¢.). Under certain regularity conditions
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