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SUFFICIENT STATISTICS WITH NUISANCE PARAMETERS
By D. A. S. FraseEr

Princeton University’ and the University of Toronto

1. Summary. For some problems involving a parameter of interest and a
nuisance parameter, it is possible to define a statistic sufficient for the parameter
of interest. The definition has a number of applications in nonparametric theory.
Two theorems are derived and used by way of illustration to prove that the sign
test is a uniformly most powerful test for the nonparametric form of the single
sample problem of location.

2. The definition. In problems of estimation and hypothesis testing, it often
happens that one parameter in particular is of interest, whereas other parameters
present are nuisance parameters. For some of these problems a generalized
definition of sufficiency can be applied. Let X be a random variable over the
measurable space & () and let {Pyy | (6, n) £ ©® X H} be the class of possible
probability measures for X. Also, let {(z) be a statistic mapping (%) into the
measurable space 3(8) and let Pj, designate the measure on 3(8) induced by
¢{(z) from the measure Pg, over (). Then we propose the following extension
of the concept of sufficiency: t(x) 7s a sufficient statistic () for the class of measures
{Poy | (8, n) € © X H} if there exists a function P, (A | t) such that

1) Po,(4 N (B)) = fB P,(4 | )dPI ()

for all A £ U, B ¢ B where the induced measure of t(x), P, is independent of .

The conditional probability that X falls in the set A given {(X) = ¢ is given
by a function which will serve as the integrand in the integral of (1). The defini-
tion says that this conditional probability must depend only on the nuisance
parameter », and that the marginal distribution of the statistic ¢(z) should depend
only on the parameter of interest 8. Thus it can be seen intuitively that the
statistic ¢(z) is in a general sense sufficient for problems concerning the pa-
rameter 6.

For the particular case in which there are no nuisance parameters, this defini-
tion reduces to the ordinary definition of sufficient statistic. However, there need
not exist a sufficient statistic (6), whereas there always exists a sufficient statistic
by the usual definition. Another drawback to the formulation above is the re-
quirement that the parameter space be a Cartesian product. Other cases can
sometimes be treated by a transformation of parameters.

3. The theorems. For the probability model defined above, consider the fol-
lowing hypothesis testing problem involving in effect only the parameter 6:

Hypothesis: 0w, neH;
Alternative: 0O — w, neH.
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If there is a statistic sufficient for 6, then the following theorem proves that in a
certain sense we need only consider test functions which can be expressed as
functions of #(x).

TaEOREM 1. If ¢(x) 7s a size a test function for the problem (2), and if t(x) s
sufficient (0), then there is a size o test function y(t(x)) for the problem, its power
Function depends only on 0, and for each 6 it has power at least as large as

3) inf Py (6, ),
ned

the mintmum power of ¢(x) for that 8. The power P4(8, n) for the test ¢(z) is
defined by

@ Pyl ) = [, 6@)dPu(z).

Proovr. Take any 9, say 7, and define
¥(t) = En{o(X) [¢X) = t},

the conditional expectation of ¢(x), given that t(x) = ¢; ¢ () does not depend on
0 or 1. From the relation (1) and the fact that a conditional expectation can be
defined in terms of the conditional probability, it follows that the expectation is
independent of 6.(t) is determined, except on a set having P measure zero, and
satisfies almost everywhere (Pj) the same bounds 0 < ¢(¢) < 1 satisfied by ¢(z).
We then choose ¥(f) to satisfy these bounds everywhere; that is, we makey (¢)
a test function. The power function of ¥ ((x)) is given by

Py(6, 1) = En{d(t(X))}
= Ey (W(T)},
and ig seen to depend only on 6. Now using (4) we obtain
Py (0) = Bi {(y(T))
= Eq {Ey{¢(X) | 4X) = T}}

= Epn {¢(X)}
= P4(6, m0),
and then it easily follows that
) inf Py(6, n) < Py(0) = sup Py(6, ).

With 6 taking value through w, (5) proves that ¢ (t(x)) is a size a test. For 6 £ © —
w, (5) proves (3).

A closely related theorem is the following:

TaeorEM 2. If t(x) is sufficient (6) for the class of measures

{Poy | (6, m) e© X H},
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then there vs a uniformly most powerful test for the hypothesis testing problem

® Hypothesis: 0= 0, n¢eH,
Alternative: 0= 6, neH;
it can be chosen to have power independent of 7.
Proor. Consider the related problem having a simple alternative;

Hypothesis: 6 =6y, neH,
(@)

Alternative: 0 = 0., 7=1m.

To find a most powerful size « test for this problem, we look for a least favorable
probability distribution over the hypothesis; a natural choice is to assign all
probability to the hypothesis parameter value having 4 = 5, . We then consider

Hypothesis: 0 = 6o n =71
® ’ v

Alternative: 0 =06, n=m.

Let ¢(x) be any size a test for this problem and let ¥(¢) be the most powerful
size « test over 3 for the hypothesis Pj, against the alternative Pj ; we show
that (#(x)) is of size « for (8) and has power greater than or equal to the power

of ¢(x); that is, we show that ¢(¢(x)) is the most powerful test for (8). Since
B W (X))} = Eg(¥(T)} = o,

it follows that ¥ (i(x)) is of size « for (8). Defining ¢*(¢) by
VO = En{o(X) | (X)) = t},

we have
Pyeen (01, m) = Ep, (Y (#(X))}

= B, (W(T))
z By, (y*(T)}
= Eom {¢(X))}
= Py (61, m),

which proves that ¢(¢(x)) is at least as powerful as ¢(z).
Now, since

B W (X))} = Eiy (9(T))

=< q

it follows that Y ({(x)) is a size « test for (7). Hence, it is the most powerful size
« test for (7). Also, since the choice of ¥(¢) did not depend on 7, , it follows that
Y(i(z)) is most powerful for each #; and hence is the uniformly most powerful
test for (6). From the properties of the statistic ¢(x), it is obvious that the power

of ¥ (t(x)) is independent of 5. This completes the proof.
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Also for estimation theory we have the following simple extension to a theorem
of Lehmann and Scheffé [1].

TreoreM 3. If t(z) is a sufficient () statistic for {Ps, | (6, 1) € © X H}, if the
class of measures {Pj | 0 & ©} is complete, and if g(8) is a real estimable parameter,
then there is an essentially unique unbiased estimator with minimum variance and
menimum risk (strictly convex loss); this estimator is the only unbiased estimator
which s a function of t(x). For vector parameters read ellipsoid of concentration
for variance.

Proor: The proof is essentially that found in {1]; we sketch the one point of
difference. Let f(z) be an unbiased estimator for 6 and define

() = B{f(X) | (X) = r}.

It is then easily seen that f,(¢(x)) is an unbiased estimator for g(#) and, from com-
pleteness, that f,(¢) is essentially independent of 7.

4. An example. In (2] the sign test was shown to be a uniformly most power-
ful test for the nonparametric formulation of the problem of location. As an
example we show that this result derives from our Theorem 2. Let X;, --- , X,
be independent and let each X; have the same distribution function Fy(z), where
{Fo| 0 cQ} is the class of continuous distribution functions on the real line.
Let £(F) designate the 8-th fractile of the distribution F, that is,

F(&) = B;

if this is not unique, let £ be any one of the possible values. Then we can describe
the one-sided nonparametric location problem by

Hypothesis: £(Fy) = 0, 0¢eQ,
Alternative: £(F) > 0, 6 Q.

For this problem the parameter space is @ or equivalently is the space of con-
tinuous distribution functions on the real line. We define three parameters
po , Fy (x), Fi (x) by the relations

9)

Py = F6(0)1
— _ Fe(a)) . <
Fy(z) = 7,00) fz =0
=1 ifx > 0,
Ffx) =0 ifz <0
_ Folx) — Fy(0) .
= T-:T(Oj— if > 0.

If po = 0, 1, then Fy (z) and F§ () are respectively indeterminate; for the sake
of definiteness they can be the distribution functions for the uniform distribution
on [—1. 0] and on [0, 1]. These three parameters (one real, two functional) give
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respectively the probability to the left of the origin, the relative distribution on
the negative axis, and the relative distribution on the positive axis. Also, for
any possible values for the parameters p, F_(z), F*(z) (F~, F* continuous),
there corresponds a continuous distribution Fy(z).

The hypothesis testing problem (9) can be written equivalently

Hypothesis: P = B, 0eQ,
Alternative: P < B, 0 cQ,

and it is obvious that this is a problem for which a sufficient statistic (ps) is
appropriate. Let ¢(z:, ---, z.) be the number of positive z;. Obviously the
distribution of ¢(X;, - - - , X,) depends only on ps , and the conditional distribu-
tion of (Xy, -+, X,) given ¢(X;, ---, X,) = r depends only on Fy, F7.
Hence, i(z1, - - - , z,) is sufficient (ps). For the binomial problem of testing py =
B against ps < B, the sign test to reject for large values of #(z; , - - - , z,) is uni-
formly most powerful. Then by Theorem 2 it is the uniformly most powerful
test for the nonparametric location problem.

- (10)
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A NOTE ON THE BALANCED INCOMPLETE BLOCK DESIGNS

By W. A. THOMPSON, JR.

Virginia Polytechnic Institute

0. Summary. It is a well-known property of the BIB design that all treatment
effects are estimated with the same accuracy, i.e., that the variances of the esti-
mates of the treatment effects are all equal and their covariances are also all
equal. We show that the converse is also true. If the estimates of the treatment
effects in an incomplete block design all have the same variances and the same
covariances, then the design is a BIB.

1. A matrix result. If

a b - Db
c={2¢ Y
b b --- a

is a v X v matrix, then C has characteristic roots-a + (v — 1)b and @ — b, the
latter of multiplicity v — 1. We need a second result which is a partial converse:
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