MATRIX METHODS IN COMPONENTS OF VARIANCE AND
COVARIANCE ANALYSIS

By S. R. SEARLE
New Zealand Dairy Board

Summary. The sampling variance of the least squares estimates of the com-
ponents of variance in an unbalanced (non-orthogonal) one-way classification
and the large sample variances of the maximum likelihood estimates of these
quantities are summarized in a paper by Crump [1]. The present paper outlines
a method of obtaining these results by the use of matrix algebra, and extends
them to the sampling variances of estimates of components of covariance when
two variables are considered. The methods are also used to obtain the large
sample variance-covariance matrix of the maximum likelihood estimates of the
components of variance and covariance.

Parr I. COMPONENTS OF VARIANCE

1. Model and analysis of variance. We are concerned with data in a l-way
classification with unequal numbers of observations in the classes. The linear
model is taken as

Tij = p+ o + e,

where 2;; is the jth observation in the sth class. We will assume that there are
¢ such classes ( = 1,---, ¢), the sth class containing n; observations
(G=1,---,n);andlet D ;n; = N. pisa general mean, and {a;} and {e;} are
random samples of size ¢ and N from two normally distributed populations
having zero means and variances o5 and o , respectively. This is Eisenhart’s
Model II [3] and it is to this model that the discussion confines itself. The prob-
lem is to find the sampling variances of the estimates of o2 and o> based on the
usual analysis of variance of between and within classes. These estimates are

) 8 = 1/(N — o[ XX 2%y — 2 nail,
2) 82 = 1/f[1/(c — 1)(Xna:. — Ni2) — 82,
where f = 1/(¢c — 1)(N — > ni/N), and Z;. = 1/n:Y ;xi;, and

i.=1/NDijxij.

2. Normal theory. In general if z; - - - 2y is a set of multivariate normally
distributed random variables with variance-covariance matrix V, and vector
of means zero, their distribution function is given by

) = 1
W= @RV b

where x’ is the row vector (21 - - - zx).

dH(zy - - - exp {—3x'V7'x} dx; - - - daw,
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If y is a function of the z’s, y = x'Fx, defined by the symmetric matrix F,
then the characteristic function of y (with parameter £) is

[ [ e ane - e,

and by the use of Aitken’s Integral [7], this can be shown to be equal
to | I — 2VF |, where I is a unit matrix. Then, if K’ is the rth cumulant of ,

2K

T

(jf? = —1log |I — 26tVF|.

By making use of the properties of the eigenvalues of a symmetric matrix, it
has been shown ([9], p. 40; [10], p. 131; and [6], p. 247) that

K® = 277y — 1)! trace (VF).
For r = 2, this gives the result
3) variance (y) = 2 trace (VF)".

It is this principle that is used to find the sampling variance of 4 and 4% by ex-
pressing them in the form x'Fx.

3. Sampling variances of the least squares estimates.

Notation. It will simplify procedure if we write a for o5 and e for o7 and
similarly ¢ and é for the estimates.

Let the row vector of observations, (i - -* Zin, -+ Ta - - * Zen,), DE Written
as x’. Then arraying the data in the order of x’ it is seen that V is a square
matrix of order N, the only non-zero elements being ¢ square sub-matrices of
order n; (¢ = 1, ---, ¢), lying along the diagonal, each with diagonal terms
a + e and non-diagonal terms a. Matrices of this particular form we will call
A matrices, A; being defined in general as a square matrix of order n;, with
a; in all its diagonal terms and b; everywhere else. The matrix of order N whose
only non-zero sub-matrices are A;’s in the diagonal will be termed a C matrix.
Thus V is a C matrix, with a; = a + ¢, and b; = a.

The quadratic form for (N — ¢)é can now be expressed as

(N — ¢)é¢ = x'Fix,
where F; is a C matrix with a; = 1 — 1/n, and b; = —1/n; . Thus from (3)
4) (N — ¢)? var (¢) = 2 trace (VF,)?,

where V and F, are C matrices. Now the product of two C matrices is itself a
C matrix, and

(5) trace C* = Y nifai + (n; — 1)b3].

Combining these results leads to the well-known expression
2

(6) var (8) = 2¢

N —¢’
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The variance of 4 is arrived at in a similar fashion, in the course of which two
further matrix types arise. The first we will call a K matrix, K;; being a matrix
of order n; X n; with k;; in all its terms. The second is termed a J matrix, a
square matrix of order N, being a C matrix with the zero sub-matrices replaced
by K ij’S. '

In terms of these matrices one can show that the quadratic form of (2) can
be expressed as

% fé = x'Fx,
where F, is a J matrix with

o & = D/n = o/N)
N R VA B

b,; = Q5 + 1/(N -_ C),

and
ki = —1/N(c — 1).

Thus VF, is the product of a C and a J matrix, which can be shown to be a J
matrix with k;; independent of 5. For such a matrix

8) trace (J°) = D.nddi + (ne — 1B + (3 nik)? — > nik .

Using these results 2 trace (VF,)® is obtainable, thus giving var (4). which can
be written as

1 28V - 1) 2ea(N* — S2) +2a"(N*S2 + S5 — sta)]
@ v @ = 1] 2 D+ B N — 17 !
where S; = >, ni,and S; = Y n}. This is the result given in Crump [2].

It is also of interest to find the sampling variance of the estimate of the total
variance, (4 + é&). By these methods it can be shown that the (VF) matrix for
the expression (¢ — 1)(é + fd)—i.e., for (Z n&; — NI°)—is

Kll ce ch
Kcl M ch ’
with k;; = (e + nwa)(1/n; — 1/N), and k;; = —1/N(e + ma). This leads to

the result
covariance (4, &) = (—1/f) var (&),

which gives
(10) variance (@ + &) = (1 — 2/f) var (&) + var ().
4. Large sample variance of maximum likelihood estimates. The likelihood

of the sample, L, is given by

1 N/2
e = <-2-> |V exp — 2x'V7'x.
s
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Thus
L = constant — 3 log | V| — 3x'V'x.

Now V is a C matrix with a; = a + ¢, and b; = a; and it is easily shown that
the inverse of a C' matrix is a C matrix with terms 477, A7" itself being an A
matrix. Also

|C1 =TI 14l = II (@ = 5™ fa + (s — Db

These results can be applied to the expression for L, which is then readily
differentiable with respect to a and e. Then the inverse of the matrix whose
terms are minus the expected values of the second order partial derivatives of
L with respect to a and e gives the large sampling variances and covariance of
the maximum likelihood estimates of the variance components. These results,
due to Crump and quoted here for completeness, are (setting a/e = Q)

var (8) = 2¢°), wi/D,
(11) var (@) = 2¢'[N — ¢ + 2, wi/ni]/D,
cov (@8) = (—2¢> wi/ns)/D,
where w; = ne/(e + nia) = n/(1 + Qny), and D = N, wi — (3 wy)®. Thus
we have established the well-known results for the least squares estimates of
the components of variance, the sampling variances and covariance of these

estimates, and the large sampling variances of the maximum likelihood esti-
mates. We now proceed to find the same results for the components of covariance.

Parr II. CompONENTS OF COVARIANCE

5. Least squares estimation. We consider the problem of the components of
covariance between two variables z and y, each based on the same linear mode}
in a 1-way classification, under the assumptions of Eisenhart’s Model II. a’, ¢’
and a”, ¢” are taken as the variance components of ¥, and the covariance com-
ponents between x and y, respectively, following directly from the notation of
paragraph 3.

The least squares estimates of a” and e” obtained from the Analysis of Co-
variance are the same functions of the sums of products of z and y as @ and &
were of the sums of squares in the Analysis of Variance:

¢ =1/ — o XX wiys; — 2 nidigal,
f&” = 1/(c — D[, ni#:g:. — Nz.§.] — ¢".

To find the variance of these estimates we use the same methods as in finding
the variance of 4 and &, namely expressing 4” and &” in the form x’'Fx, and,
using a variance-covariance matrix V, evaluate 2 trace (VF)’. In this case we are

concerned with a random sample of 2N variables (zy <« - - - Teng yYra*vr = Yeny)
which we assume to be multivariate normally distributed with variance-co-

(12)
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variance matrix ¥V, say. A little consideration will show that Vi, associated
with the vector (x’y’), is
14
Vl = <-[ZI ¥/>,

where V' and V” are the same C matrices as V, but in terms of @, ¢’ and a”, e
respectively. This notation will not be confused with the usual use of primes
to denote transpose matrices, since no transposed matrix enters into this analysis.

We now proceed to find the matrix expressions for the sums of products.
Writing z’ = (x/, y') the following results hold:

. i
222 wyyi = 37 (I )Z,

4

c

.

Z N &, Yi, = %Z' <é >Z, with a; = b; = l/n,-,

and

Nz §. = 37 <KN K"> zZ, Ky being an N XN K matrix with terms 1/N.

These expressions give
4 - F
(N — ¢)¢" = 17 <F1 .1) z,

and thus the VF matrix for (N — ¢)&” is

AV V(- F1\ _ 1 V'F, VF
2 V// V/ FI . = V/ Fl V” Fl .
Now each of the four sub-matrices in this expression is the same VF,; as used for

obtaining var (8) in (4). Therefore in terms of the general result (3), trace (VF)?
for (N — ¢)&” comes from a double application of (5), namely

(13) dndai® + (i — b7 + as + (ng — 1)bdi],
which leads to the result

6”2 + eel
N—c¢’

A similar procedure holds for var (4”). From (12) f4” can be written as

w5t (e - atile, ®)-wG D)

i+ Fe

var (&) =

Wi
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where F, is the J matrix defined in (7). Therefore

" _ VOV F\T_. V'Fy VF, >2
var (f8") = 2 trace [2 (V" V') <F2 ) = 1 trace V'E, V'F.) -

The sub-matrices of this expression are the same J matrix as considered in ob-
taining var (4). Therefore by a double application of (8) similar to (13), var (f4”)
is obtained. This leads to the result that var (4”) equals

1 [(N — D" + &) n (N? — 8,)(2¢"a” + €'a + ea’)
FPL(N=0c(—-1) N(c— 1)

(N?S; + 83 — 2NSy)(a”* + aa’)]
N2(c — 1)2 ’

which is the same expression as var (4) with (¢”* + ee’), (2¢”a” + ea’ + ¢'a),
and (a”* + aa’) replacing 2¢°, 2ea, and 20’ respectively.
Finally it can be shown that equation (10) holds for ¢” and 4”, namely

(15) var (8" 4+ 4”) = (1 — 2/f) var (¢”) + var (4”).

Thus far we have found the variances of the least squares estimates of the
components of covariance. The next step is to have the efficiency of these esti-
mates by finding the large sample variance of the maximum likelihood esti-
mates of ¢” and a”.

(14)
..l.

6. Maximum likelihood estimates—Ilarge sample variances.
6.1. L, the likelihood function for the sample of 2N observations is given by

L ]- NIz -3 1,/ 1
e =(=— [ V1| exp (—32'Vi2),

2w
where
4, AY 7
-V- V” Ac AZ
V= <V// V’> = ’
A7 Al
T A” C A/

with a; = a + ¢ and b; = a (and similarly the primed terms) by the definition
of paragraph 3.

We will now consider an orthogonal transformation of z, w = Tz, the variance-
covariance matrix appropriate to w being W. With 7T’ = I, W = TV,T’,
V, = T'WT, and

L __ 1 iz -4 1./ 1,
(16) ¢ =5 | W |7 exp (—3w'W 'w).
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The value of T which simplifies ¥V most easily is

H,

where H; is a matrix of order n; having terms

BS) = 1/A/n;  forp = 1, and all g,

0 forp > 1,and ¢ > p,

1/vplp — 1) forp > 1,and ¢ < p,

—( — 1)/l — 1) forp > 1,andqg=p,p,q =1---n;.

Il

As an example, for n; = 4

(1 1 1 1
4 Vi Vi 4
1o =1
2 2
b=
11 =1
V6 V6 V6
1 1 1 -1
V12 V12 V12 V12
For this value of 7',
W=Tv.T,
D, DY
D D
17) W = ’
( ol D
| D! D

where D; is a diagonal matrix of order n; , the leading term being (e + n.a), the
remaining terms e.
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6.2. To obtain W and w'W 'w of (16) first observe that an elementary matrix
of the form

( ”
my my -
”
My © Mo
n
* Mg © mg
M =
4 ’
mi ms
”n ’
c Mo * Mg
n !
L . . m3 . . m3
can be written as the product
n
my My - 1 ¢ ¢0 o & 1. ¢ ¢ «
”
e 1. . ma + ~my 1
n
« o1 - 1. - oMz cM3
M v
my-Mmy - .1 e o 1. .
n !
B | ‘Mg * My * . o1
14 !
1 coee o 1 c M3 e M3
Immediately this gives

| M | = I (mimi — mi®).
£

Similarly M is itself an M matrix, with m;, mi, and ms replaced by
mi/(mams — mi%), —mi/(mm; — mi?), and m;/(mmi — m;’) respectively.
6.3. These results can be extended, and applied to W as given in (17).

NoraTion. Write

pi = e + na,
g = e — e
1 = ppi — Pi° = (e + na)(e’ + nia’) — (¢” + nia”)’.
Then
l W‘ = qN—c H Tiy
4 D; —D;,
oy o
(18) W =
—-Dy D,
\ _D‘I’, D"/

where D, is a diagonal matrix of order n;, with leading term p,/r;, and other
terms equal to ¢/q. D; and D! have the same form as D but with their numera
tors primed.
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Now wW'w = z'T"W 'Tz. Furthermore V; = T'WT, and therefore, since
W is of the same form as W, T'"W'T has the same form as V;: its sub-matrices
are A matrices. This being so, notice that for a vector of n; z’s, x; ,

x:‘,AiXi = (a; — b;) Zj .’173,' -+ b.xf

(19) 2 2
= (a: — bi) <Z xh — E‘-) + T8 (g + (ms — 1)b.
i U n;
Therefore
wWilw = 2T'W Tz
(20)

= 2 (®Aix: + yidiy: — 2x:ATy)

can be expressed as a sum of terms like (19). Now the A matrices in V; have
a; = a+ eand b; = a. Vi = T"WT, and the D matrices of W have leading
terms e + 7n.a and other terms e. Therefore, since the D matrices of W™ have
leading terms p,/r; and other terms e/q, the A matrices of T"W™'T have

a; = [(n: — 1)e/q + pi/ri]/ni

and
bi = (pi/ri — e/q)/ni.
This gives
(21) a; — b; = e/q, and a; + (ni — Db = p/r.
Substituting expressions (18) to (21) in (16) gives the likelihood as
L=—1INlog(@2r) —i(N — ¢)logg

— 1 L (! — "
(22) 3 Z logr; — 3(e'X 4+ eY — 2¢"Z)/q

- %Z PiX: + pY: — 2p{Z3)/ri,
where

@) = D 5%y — Jind.,  with expected value (N — c)e,
X; = niis, with expected value p; .

Y, Y;and Z, Z,; are similar sums of squares of y and sums of products of z and
y respectively, with appropriate expected values.

6.4. To find the large-sample variance of the maximum likelihood estimates of
all the six components of variance and covariance together, we require the
6 X 6 matrix whose terms are the expected values of the second order partial
derivatives of L with respect to e, ¢/, ¢” and a, a/, a”. Call this matrix L, , and
consider the row vector of operators:

a,_<a 3 3 9 9 i)
de de’ de’’ da da’ da’’/ "
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Then L, = —E8d'L. Applying this to (22), L, will involve the following terms:

2 log ¢ = —12- (q38'q — 3g 'g),
(24) !
e 1., 1 , , 1 ’
30 o) = (E(aae) —Z (3e ¥'q + €dd'q) + q—a(eaq ¥q),

and similar expressions for 39’ log (r;) and d’(e/r;). Writing

.1 .
v=(1 - - |,
.. =2

the terms in (24) can be written as
¥g=('e—2"000) =¢ say;

g = (U ) = 8, say;
ar, = (pi pi —2p70 0 0) = t::,sa,y;
0’ vomu T

Nn; U 7?3 U ’ ’

and also,
e=(1 0 0 0 0 0),

a'p,-=(1 0 0 n; 0 0),

with similar results for ¢/, ¢”, p;, and p? . All second order derivatives of the

¢’s and p’s are zero.
Using these terms and the expected values indicated in (23) it can be shown

after a little reduction that
—L; = (N — c)%(SS’ -8+ —;-;171@ (tsti — T).
i

This has now to be inverted to give the variance-covariance matrix of the maxi-

mum likelihood estimates. If we define

2 "2 ? N
e e —2¢e

”2 2 n
P = e e —2¢e ,
n /) 4 72
—2¢'e” —2ee” 2ee’ + 2

and similarly P; in terms of the p,’s, then — L, can be written as

N - cP+2171-%P; TP

q2

S

(25) N o
Z;éPi Z;‘%P@'
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6.5. Inversion of the matrix in this form does not seem possible, and so in order
to make use of it in applications one must at this stage resort to arithmetical
methods, replacing the components by their estimates, computing the matrix
as it stands, and then inverting it, either directly or by a method of partitioning
[5]. For calculating L, , 24 terms must be computed; 6 of these are the squares
and products of the ¢’s multiplied by (N — ¢)/¢%, and the remaining 18 are the
sums of squares and products of the p;/r; terms, weighted by 1, n;, and nj .
The computing is facilitated by grouping together at all stages all classes having
the same number of observations in each class.

6.6. Due to the symmetric nature of P, the upper right (and since L. is sym-
metric also, the lower left) quadrant of L;* is symmetric. This means (for ex-
ample) that the large sample covariance between the maximum likelihood esti-
mates of a between-classes component of variance of x and the within-classes
component of variance of y is the same as that between the between-classes
component of variance of ¥ and the within-classes component of variance of x;
ie.,

cov (&) = cov (&'¢),
and similarly
cov (4”8) = cov (G&”),

~)

cov (8”¢') = cov (@'e”).

6.7. Where two variables have a bivariate normal distribution with variances
o7 and o3 and unknown correlation coefficient p, it can be shown that the large
sample variance of the maximum likelihood estimate of o (where p is estimated
also) is 20%/n, (¢ = 1, 2.) This is the same result as when the two variables are
assumed independent. Generalizing this to the case which we have considered,
it can be seen that the values in the inverse of the matrix (25) appropriate to the
variance components ¢, @ and ¢/, ¢’ will be the same as the expression (11). The
matrix, however, gives further information about the covariance components
¢” and a”, and also the large sample covariances among the maximum likelihood
estimates of all six parameters.

7. Conclusion. Henderson [4] has shown how components of variance can be
estimated from unbalanced data in an n-way classification, and states that sam-
pling variances of such estimates are unknown—this is certainly true for n
greater than one. This paper presents a matrix method suitable to finding the
variance in this known case, the 1-way classification (under the assumptions of
Eisenhart’s Model II) with a view to extending it to higher classifications. As
a first step the method has been shown to give results for the covariance case
in a 1-way classification, and it would seem that the 2-way classification for
components of variance can be handled in a similar fashion.
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