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0. Summary. This paper is devoted, in the main, to proving the asymptotic
minimax character of the sample distribution function (d.f.) for estimating an
unknown d.f. in § or &, (defined in Section 1) for a wide variety of weight func-
tions. Section 1 contains definitions and a discussion of measurability considera-
tions. Lemma 2 of Section 2 is an essential tool in our proofs and seems to be of
interest per se; for example, it implies the convergence of the moment generating
function of @, to that of G (definitions in (2.1)). In Section 3 the asymptotic
minimax character is proved for a fundamental class of weight functions which
are functions of the maximum deviation between estimating and true d.f. In
Section 4 a device (of more general applicability in decision theory) is employed
which yields the asymptotic minimax result for a wide class of weight functions
of this character as a consequence of the results of Section 3 for weight functions
of the fundamental class. In Section 5 the asymptotic minimax character is
proved for a class of integrated weight functions. A more general class of weight
functions for which the asymptotic minimax character holds is discussed in
Section 6. This includes weight functions for which the risk function of the sample
df. is not a constant over §.. Most weight functions of practical interest are
included in the considerations of Sections 3 to 6. Section 6 also includes a dis-
cussion of multinomial estimation problems for which the asymptotic minimax
character of the classical estimator is contained in our results. Finally, Section 7
includes a general discussion of minimization of symmetric convex or monotone
functionals of symmetric random elements, with special consideration of the
“tied-down”’ Wiener process, and with a heuristic proof of the results of Sections
3, 4, 5, and much of Section 6.

1. Introduction and Preliminaries. Throughout this paper we shall denote by
F the class of all univariate d.f.’s and by F, the subclass of continuous members
of § (for the sake of definiteness, members of & will be considered continuous on
the right). Let R™ denote n-dimensional Euclidean space, and let G be any sub-
space of the space of all real-valued functions on R'. For simplicity we assume
§ C @, although it is really only necessary that G contain the function S, ,
defined below, for every ™. Let B be the smallest Borel field on G such that
every element of & is an element of B and such that, for every positive integer
k and all sets of real numbers {#, - -+ , %} and {a1, -+ , @} withty <& < --- <
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t, theset {g | g e G;9(t) < a1, -+, g(tx) < az} is in B. (Thus, we might have
G = F and B the Borel field generated by open sets in the common metric
topology.) Let D, be the class of all real-valued functions ¢, on B X R" with the
following properties: for each z™ & R", ¢n(-; 2™) is a probability measure
(B) on @; and for each A ¢ B, ¢,(A;-) is Borel-measurable on R".

The problem which confronts the statistician may now be described. Let
X, -+, X, be independently and identically distributed according to some
d.f. F about which it is known only that F ¢ &, (or even F ¢ F). The statistician
is to estimate F. Write X = (X1, -- -, X,). Having observed X'® = 2™ =
(21, - -+, &), the statistician uses the decision function ¢, as follows: a function
g € G is selected by means of a randomization according to the probability
measure ¢,(- ; ™) on G; the function g so selected (which need not be a member
of ) is then the statistician’s estimate of the unknown F. It is desirable to select
a procedure ¢, which may be expected to yield a g which will lie close to the
true F, whatever the latter may be; the term ‘“close” will be made precise in
succeeding sections. We note that the decision procedure ¢ which for each z‘”
assigns probability one to the “sample d.f.” S, defined by

S.(z) = (number of z; < x)/n

is a member of D, .

We now turn (in this and the four succeeding paragraphs) to measure-theo-
retic considerations which are relevant to this paper. Our point of view is to
waste as little space as possible on these considerations, since our results hold
under any measurability assumptions which imply the meaningfulness of cer-
tain probabilities and integrals involving elements ¢ of D, , and, in fact, our
results hold even if these are interpreted as inner measures and integrals (which
will be proper ones when ¢ = é1), as we shall now see.

In Sections 3, 4, and 6 we shall be concerned, for a given n,¢ € D, , r > 0,
and F ¢ %, with the probability that, when the procedure ¢, is used and the X,
have d.f. F, the selected estimate g of F will satisfy the inequality

sgpl gl@) — Fx) | > 7.

We shall denote this probability by
(1.1) Pry{sup| g(x) — F(z) | > r}.

It is clear when ¢ = ¢} that this probability is well defined. This probability
will also be meaningful if @ is sufficiently regular; for example, if G consists of
functions continuous on the right, the supremum in the displayed expression is
unchanged if it is taken over rational x, and the probability in question is well
defined. For our considerations it is not even necessary to restrict G in this way;
we need not concern ourselves with questions of measurability of

sgpl g(x) — F(z) |,
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since the optimal properties proved for ¢} hold if the supremum is taken only
over the rationals (this last supremum is never greater than the supremum over
all z and is equal to the latter when ¢ = S,). Thus, for arbitrary G and ¢, the
“probability”’ expression displayed above may be interpreted with the supre-
mum taken over the rationals (or, alternately, as an inner measure, or as the
infimum over all positive integers k and sets of real numbers &, - - - , & of

Pro{maxicici | g(t:) — F(&) | > r}).

In Sections 4 and 6 expressions such as
(12) [we a ey fsup [ 9@) — F@) | 5 1)

appear, the integral being taken over the nonnegative reals with W = 0 and
nondecreasing. The probability appearing here is to be interpreted as unity
minus the probability previously displayed in (1.1), but the integral is to be
interpreted as including a term ylim..,W(r) if ¥ > 0, where

v = lim Pm{sup | 9(@) — F(x) | > 7‘}-

In Sections 5 and 6 we will encounter such expressions as

13) r(F,¢) = Ery [ Wg® — FO), F®) dF O,

or such an expression with the first two symbols (operations) interchanged.
Here W (z, t) is defined for = real and 0 < ¢ =< 1, is measurable (in the Borel
sense on R?), is nonnegative, and for each ¢ is even in z and nondecreasing in
forx = 0. Er 4 is the operation of expectation when the procedure ¢ is used and
the X; have d.f. F. If ¢ = ¢, r(F, ¢) is clearly well defined. For other ¢, any of
a number of general assumptions on W and @ will suffice to make the integral
meaningful; for example, if W is continuous, F ¢ F., and G consists of functions
continuous on the right, then the integral is determined by the values of g on
the rationals, and r(F, ¢) is meaningful. Weaker assumptions may be made,
and, in fact, one could treat r(F, ¢) as an inner integral (which is a proper in-
tegral when ¢ = ¢u%) and still obtain the optimum properties for ¢ which are
derived in this paper.

Finally, in Sections 3, 4, 5, and 6, the method of proof used involves integra-
tion of expressions such as (1.1), (1.2), and (1.3) with respect to probability
measures &, on ¥, . These &, will always be measures (B) and, in fact, will be of
a very simple form. Sometimes the order of integration will be interchanged in
these sections. If ¢ = ¢%, the above operations are all easily justified. For other
¢ these operations may be justified, as in the previous three paragraphs, by
suitable regularity assumptions on G and W or, again, the integrals in question
may be considered as inner integrals.
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2. Two Lemmas. In this section we shall state two lemmas (and a corollary
to the second) which will be used to prove the results of Sections 3 and 4, respec-
tively. Lemma 1 is due to Anderson [8], while Lemma 2 is derived from results
of Smirnoff [9].

For any set S in R” and any n-vector p, we write S + p = {x |z — p & S}.
Denote m-dimensional Lebesgue measure by u» . The case of Anderson’s result
which will be of use to us is the following:

LemMA 1. Let P be a (possibly degenerate)® normal probability measure on R"
with means zero, and let T be any convex body in R" which is symmetric about the
origin. Then P(T) = P(T + p) for all p.

We shall also use (in Section 5) the trivial fact that the result of Lemma 1
holds for » = 1 when P is a normal probability measure truncated at (—g8, 8)
for 8 > 0. In Section 7 we shall mention briefly an application of the more gen-
eral form of Lemma 1 given in [8].

Before stating Lemma 2, we shall introduce some notation. Let U denote the
uniform d.f. (i.e., the d.f. whose density with respect to u; is unity) on [0, 1], and
write, for r = 0,

Gulr) = P”{oséligl | Sul@) — x| < r/\/ﬁ},

Grn(r) = Py {121% | 8aG/ + 1)) — /(6 + 1) | < r/\/ﬁ},

G(r) =1-—2 Z (_1)m+le—2m2r2’
m=1

(2.1)
H.(r) = Py {oséug1 [Su(zx) — 2] < r/\/ﬁ} )
Hiw(r) = Py {11;1@; [8uG/(k + 1)) — /(b + 1)] = r/\/ﬁ},
H(r) =1-— e,

Then

(2.2) Grn(r) = Ga(r)  and  Hpa(r) = Ha(r)

for all k, n, r. Moreover,
lim Gen(r) = Ga(r),

k>

lim Hk,n(r) = Hn(”);

k>0

(2.3)

and ([1], (2], [3])
' lim lim Gi.a(r) = lim G,(r) = G(r),

(24) k.—>oo 7f—>oo n’—mo
lim im Hp,(r) = lim H.(r) = H(r).
k>0 n->00 n->0

3 The fact that the measure need not be n-dimensional necessitates only trivial modifica-
tions of the argument in [8].
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We shall now prove the following:
LeMMA 2. There exists a finite positive constant ¢ such that
—2r2

(2.5) 1 — H,(r) < ce
and
(2.6) 1 — G.lr) <ce™

hold for all r = 0 and all “posttive integers n.

An immediate consequence is

CoRrOLLARY 2. If W(r) s any nondecreasing nonnegative function defined for
r > 0, then

@7 lim fo " W) dHL) = fo " W) dHG)
and
©.8) lim | " W) da. ) = | “ W) dew).

Indeed, the lim inf of the integral on the left side of (2.7) or (2 8) is always

> the respective integral on the right side. Now, if [¢ W(r)re_z' dr = o, then
by (2.1), the integrals on the right side of (2.7) and (2.8) are both 1nﬁmte and
thus (2.7) and (2.8) hold in this case. If, on the other hand,

l W(r)re™ dr < o,

then Corollary 2 follows from (2.4), (2.5), and (2.6), and in this case both sides
of (2.7) and (2.8) are finite.

Proor oF LEMMA 2. Since 1 — G,(r) = 2 (1 — H,(r)), it suffices to prove
(2.5). We shall deduce (2.5) from the explicit expression for 1 — Hn(r) given by
Smirnoff [9]. Obviously, 1 — H,(r) = 0 for r = +/n, while for 0 < r < /7,
equation (50) of [9] asserts

n—1

(2.9) 1— H(r) = (1 —r/vV/D)"+rv/n 2 Q)
j=[rv/n]+1

where [z] denotes the greatest integer < « and

@10 @G = (3) G Ve =V

In what follows we may, and do, restrict ourselves to 0 < r < v/n.
Taking loganthms and differentiating, it is seen that the maximum of
(1 — r/4/n)"¢"" oceurs atr = 0; hence,

(2.11) (1 - é-:) &< 1.

n
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A simple computation yields for all j with rv/7 < j < n,
d . —rn’ Vn
- log Qu(j, 1) = — . - .
dr G=rvVa)n—j+rvn) n—j+rvn
' —4r

2
1—4<g—j+r\/ﬁ)

n?
<—4r—1—§—z<g—j+r\/ﬁ>

which on integrating gives

<

2
)

2 -\ 2 4
(212) Qu(,) < Qa4 0) exp [—272 - 8—,;- (’5 it _21';/7&) - 3—2—]’

as well as

2
(213) Qu.(j,7) < c1Qu(j, 1) exp [_27'2 - §,:—2 <g -+

Vi 4__7'4]
3 9In
for r = 1; here ¢; denotes a universal finite constant (and similarly, ¢, c;,

cs , s in the sequel).
We divide the sum of (2.9) into two parts: Z’ will denote summation over

those j for which

<
4

2.14) i-7

and >.” will denote summation over the remaining values. It follows imme-
diately from Stirling’s formula that

Q.(5, 0) < ™
for j satisfying (2.14). Hence we have from (2.12),

’ : C: —272 1 2% j2
0G0 < e T e - 8 (5 2 -

0

2¢y e—zﬂ Z e-—~8r2j2/n2

Swrt 4

20 _p2 (1 © e
<\—/%e“(;l+fo esmdt)
< % e,

rn

Hence,

(2.15) r\/ﬁZ' Q.(,r) < e .
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Let us now deal with the j occurring in >.” , i.e., those for which (2.14) does
not hold. If 2rv/n/3 < n/8, then the second term in the exponent in (2.13) is <
—(r*/8) while otherwise r > 34/n/16 and the last term in the exponent in (2.13)
is < —(4/9)(3/16)%". Thus, in both cases we have for r > 1,

Qn(]’, 7,) < len(j, 1)6—2126—c4r2 < f—ﬁQn(j, l)e-—21'2.
Hence we have from (2.9),
(2.16) 12 Qu(j, r) < c;,e_?'z\/ﬁz:” .3, 1) < e

(2.11), (2.15), and (2.16) imply (2.5) for 1 < r < /7 and thus obviously for
all r.

3. Asymptotic minimax character of ¢ for a fundamental class of weight
functions. In this section we shall prove the asymptotic minimax character of
ér (as n — ) in a sense which is fundamental in that the minimax character
relative to all reasonable weight functions of a certain type will follow (in Sec-
tion 4) from the results of the present section. We shall now prove the following
strong property of ¢n:

TaEOREM 3. For every value r > 0,

sup Pr{ suplSn(x) — F@)| > r/A/n}

3.1 lim —Ze%e
3.1) n>w inf sup Prg sup]g(x) — F()| > r\/—}

¢eD, FeF,

In fact, the probability in the numerator of (3.1) is independent of F for F ¢ &,
aud is no greater for any F ¢ F — &, than for F ¢ F, (see [1]); as an immediate
consequence of Theorem 3, we thus have

CoRrOLLARY 3. The result of Theorem 3 holds if F. 1s replaced by F in its state-
ment.

We also remark that (3.9) and (3.20) below may be used to give an explicit
bound on the departure of ¢% from minimax character; the integer N of (3.9)
may be computed explicitly by merely keeping track of the constants which go
into various error orders in the proof which follows; an explicit estimate of de-
parture for n < N could be given similarly. With slightly more difficulty such a
bound could also be computed in the cases treated in Sections 4, 5, and 6.

In order to prove (3.1), we shall exhibit a sequence {£.} of a priori probability
measures on F, such that, letting A, (k a positive integer) denote the set con-
sisting of the & points 2/(k + 1) (for 1 < ¢ = k), we have

lim lim inf [ Ppg{ sup lgla) — Fla)| > r/v/n} dém

k>0 n->w ¢eDy ac Ay

lim lim [ P {sup [ Su(a) — Fla)| > r/A/n} déwm

k>0 n->w acAp

lim lim Py { sup [ Sn(a) — a| > r/A/n},

k>% n->w0 ac Ay

It

3.2)

H
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where U is the uniform distribution on [0, 1]. Now, the expression under the limit
operations on the left side of (3.2) is, for each n and %, obviously no greater than
the denominator of (3.1) for the same n. On the other hand, the right side of
(3.2) is equal to the (positive) limit as n — <« of the numerator of (3.1), by (2.4).
Hence, (3.2) implies (3.1).

In order to prove (3.2), we shall for each lc limit ourselves to measures &,
which assign probability one to distribution functions in &, of the form

k41
(3.3) Fr(z) = lei Ua(z), pi> 0,2 pi =1,

where Uy(x) is the uniform probability distribution on the interval [(¢ — 1) /
(k + 1), 2/(k 4 1)]. For fixed k and m, it is easily seen that a sufficient statistic
for the vector {p;} (and thus, for the famlly of Fy’s of the form (3.3)) is given by
the vector 7™ = {T P, Tis ), oo, TE%0), where TSP isequal to the number of
components of X wh1ch lie in the interval [ — 1)/(k + 1), %/(k + 1)]. Hence,
the validity of (3.2) will be implied by the following stronger result: Let By be
the family of vectors 7 = {p;, 1 < ¢ = k + 1} satisfying p; = 0, Z P =
T¢™ has the multinomial dlstrlbutlon arising from n observations on & - 1
types of objects, according to some = & By, i.e., for integers x; = 0 with

ZI{-H T = m,

!
(B4) PATP =a,1<i<k+1} =—"

T Tkl ,
——— D1 *** Dkt1
$1! e xk+1!

8, is the class of all (possibly randomized) vector estimators

YUn = {‘pnly e )‘/’n'k+l}

of # = {p} based on Ti™ (¥, need not take on values in By); the &, are prob-
ability measures on By, which will be chosen so that

]Z; (g — pj) | > 1/ \/ ﬁ}d&m
Z (T(n)/n )

lim inf | P. {sup

n>0 ¥ne8n
(3.5) = lim f P,,{sqp

= lim Py, {sup

n->00

> 7'/ '\/_} dskn

Z (T5P/n — 1/(k + 1))‘ > r/\/ﬁ},

where V), = {1/(k + 1), ---, 1/(k + 1)} & By . Taking limits as & — o« (we
have seen that this limit exists for the last expression of (3.5)), we see that the
demonstration of (3.5) will imply that of (3.2). If we prove (3.5) with &, re-
placed by the class of nonrandomized ., , then (3.5) will a fortiori be true in the
form stated above. Hence, in what follows, all ¥, will be nonrandomized.

Some intuitive remarks are in order regarding the choice of &, (and the mys,
defining it) in the next paragraph. For simplicity, let us consider the case & = 1.
We are then faced with a binomial estimation problem. The classical estimator
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of the parameter p; is asymptotically normal with maximum variance at p; =
3 (this is V1 ; in general, the corresponding phenomenon which concerns us
occurs at # = V}). In order to obtain our asymptotic Bayes result (3.5), we want
£1. to approximate a uniform measure on an interval of p; which has the following
properties: on the one hand, the width e, of this interval, when multiplied
by v/, must tend to infinity with n; on the other hand, the width itself must
tend to zero. In terms of the parameter \/n(p1 — %) and random variable
(TSP — n/2)/A/n, we will then be faced, asymptotically, with the problem
of estimating the mean of a normal distribution (where, asymptotically, all real
values are possible for the mean, with a uniform a priori distribution over a
region whose width +/7e, tends to «) with almost constant variance. The classi-
cal estimator will then be asymptotically Bayes for our weight function. Since
a uniform a priori distribution would be slightly less simple to use (in keeping
track of limits), we use instead one of the form (3.6) below; but the choice of
the parameter m;, therein is motivated by the remarks above.

Let m = m., = (greatest integer < n'*/k%), let ¢ = e.. = m/n, and let
&.» be the probability measure on B; which is given rise to by the probability
density function

(36) han(rs =5 pr) = Con [(1 B i ”") I:I ”"T

with respect to Lebesgue measure on the k-simplex {0 < D> sp: < 1, p: = 0
(1 £ 7 £ k)} and is zero elsewhere. Here

Crn = T(Im + 11k + 1])/[T(m + DIFH.

Let YiP = TSP /n. Letd; = p; — 1/(k + 1). The a posteriori density of & , - - - , &,
given that YiP = y; (1 = ¢ < k) (for possible values of the set {y:}) when &,
is the a priori probability measure on B; is (the domain being obvious)

k41 1 yi+eIn
3.7 Ten(Buy o c 5 06| Y1y =+ 5 Yn) =[Clg<3i+k—_l_——l> :I ,
where we have written 6,41 = 1 — D .58; and ya = 1 — D 5 ¥; for typo-
graphical simplicity; here (C1)* = T'({m + 1]k + 1] + n)/T[™'T(m + 1 + ny.).
Let 7; = & — YiP + 1/(k + 1). Then the a posteriori density of 1, -+« , 7is
under the same conditions is (the domain again being obvious)

f;ﬂk.n(n17""77kly17"'yyk)=qu,n('ﬂl’"')'ﬂklyl,"',yk)]"
(3.8) B+l R
= I:Cl g (y: + m)y’h] )

where gz = — Z’f .
We shall now prove that, for each & and each 7* with 0 < r* < o, we have
for n > N(k, r*) (the latter will be defined below)



ASYMPTOTIC MINIMAX CHARACTER 651

% 0= ¥17) | 5 75
Z (pi — ¥mp) | £ \/—} —n

for all » with 0 = r =< r* and all ¥»; (not necessarily positive or summing to
unity); here Py denotes a posteriori probability of = (i.e., of {p;}) when (3.6)
is the a priori distribution, while E, denotes expectation with respect to the
measure on B, X R**' given by (3.6) and (3.4). Noting that the second in-
tegral in (3.5) is unity minus the left side of (3.9) and that for each % the left
side of (3.9) tends to a limit as n — < (this will follow from (3.20) below), we
see that (3.9) actually implies that the first and second expressions of (3.5) are
equal for each k. On the other hand, the limiting joint distribution function of
the set of random variables {A/n[Y (”) —1/(k+ 1], 1 =7 = k} under Vy is
well known to be that whose densﬂ;y is given in (3.20), below, if we set all y; =
1/(k 4+ 1) and let n —  in the latter; since (3.20), which is the asymptotic a
posterlorl joint density of the (p; — Tir’/n), is continuous in the y;, and since
the Y£P tend in probability (according to (3.6) and (3.4)) to 1/(k + 1) asn — e,
it follows that the second and third expressions of (3.5) are equal. (This last
follows also from the continuity in = of lim,..P.{ } in the second expression of
(3.5) and the fact that lim, .o&x(J) = 1 for any neighborhood J of Vi.) Thus,
our theorem will be proved if we prove (3.9), and we now turn to this proof.
In this demonstration our calculations will be performed under the condi-

tions

EtPa, {Sup

k3

(3.9

> E, P} {sup

lys = 1/k+1 | <1/26+1) (A=i=k+1),
(3.10) | 76| < w7 ¥8/4k(k + 1) 1=iZ2k+1),
n > kY.

All orders O (-) will be uniform in the variables not appearing in the arguments.
By (3.8),

k+1 k+1 )
(3.11)  log gin = log C1 + ; (y: + € log y: + 21: (: + ¢ log (1 + —Z—')

From (3.10), we have

ni 1 1
(3.12) o | < g S 5
and hence
3
lo (1 + 1) _m W g
g vi) Y 2y y'“l
with

(3.13) 6 < 1, Q=i k+1).
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Now, writing
2
, niy = . - M
Wi+ o) log (1 + y) e 2.% + 01 ?Jf T ( 2y + 0 2)

and remarking that » &' n; = 0, that by (3.10) and (3.13)

k41 3 2
4(k + 1) 1
2o, g2 64 F 1)~ 7B

and that by (3.10), (3.12), and the definition of e

< (k+1)

k41 kit
i N 2 k + 1 2
Z (1—2—%—{—1‘)z 2> <2e;§; < jZ T anmé?—zm’
we obtain

Bl B4l 2
(3.14) Z(y,~+e)log<1+"—,>=—§;%+mv
with | 6| < 1. Combining (3.14) and (3.11), we have

kel 1k 2

(315)  log gin = log C1 + ; (yi + ¢ log ys — 5 Z Ju ‘4 Ol ).
Next, we note that
(316) (Cy" H Y2t = pE rym(ys + my - NYR M3 Y1, o, Yri),

where p§(wy, + -+, Weg1; @1, * -+ 5 Qe41) is the (multinomial) probability that
among N independent, identically distributed random variables taking on the
value 7 with probability ¢:.(>_ i+ ¢;: = 1, ¢ = 0), there will be w; taking on the
value (3 w; = N). Using the familiar representation of this probability in
terms of binomial probabilities, the definition of m, the inequalities (3.10), and
the estimate for binomial probabilities

3.1
= [2eNp(L — p)I ™% 1 + 0N )]

for |¢| < Csand |p — 3| < €7 < % (given in [5], p. 135), we obtain (with a
conservative estimate of error)

(3.18) )" H g2t = (1 + 0™ @) ™" II i
Hence, in the region (3.10) we obtain from (3.15) and (3.18), writing again 941 =
—> kmiand ypp = 1 — 21y,

IR ) PR /8]

3.19) = @+ 06 e (TTu)  on (=53 7).
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For the corresponding a posteriori joint density of ; = v/ng:,¢ = 1, -+, k,
in the region (3.10), we thus obtain (writing vyz.1 = —Z’f ¥s)

k+1 -1/2 k+1 2

(3.20) (1 + 0%y (2m) ™" <Ill y,~> exp (— %le ";—> .

Except for the first factor, this is a k-dimensional normal distribution centered
at the origin. Note also that the probability assigned by this density to the com-
plement of the region | #; | < n~"*/4k(k + 1) of (3.10) (for a single 7) is (by
Chebychev's inequality) < [1 + O ™®)]0%*'n ™), so that the probability of
the above inequality on the 7; for all ¢ according to (3.20) (using k& < n"*°) is at
least 1 — O(n™®). Also, the p; or (3.6) have means 1/(k + 1) and variances
O(m™k?) = O(n™""*), while Y5 (given the p;) has mean p; and variance O(n "),
whatever the p; may be. Hence, for a single 7, the probability (according to (3.6)
and (3.4)) that | ¥{P — 1/(k + 1) | < 2k + 1) is

2P{|p: — 1/( + 1) | < 30k + 1)} X P{{Y{P — pi| < 3k + 1) |p3)

=1 — o™ + on™)}.
The probability that | Y’ — 1/(k 4+ 1) | < 1/2(k + 1) for all 7 is thus
) 21 —-rom™) =1 —-0n™b.

We conclude, then, that the region of Y57, 7: (1 < ¢ = k + 1) specified in (3.10)
(putting Y5 for y; and 7; for 5;), and hence where (3.20) holds, has probability
1 — O ® according to (3.6) and (3.4).

Now, for fixed r* > 0, let Ni(k, r*) be such that if n > Ni(k, r*), then

8 < w84kl + 1)

and the probability under (3.20) that all | 4;| are <n *®/16k(k + 1) is =
1 — n7*/2; clearly, such a number N;(k, r*) exists. For 0 < r < r*, let T, be
the region where | j_1v;| < 7,4 =1, .-+, k + 1. Note that T, is contained
in the region where | v; | < 2r* forall 5. If p is any vector all of whose (k 4 1)
components are ép”s/Sk(lc + 1) and if n > Ni(k, r*), then T, and T, + p
both lie entirely in the region of (3.10) (where (3.20) holds), whose probability
according to (3.6) and (3.4) is 1 — O(n™"®). Write C, and D, for the events in
brackets on the left and right sides of (3.9), and define L = L(X1, - -+ , X», ¥n)
to be 1 or 0 according to whether or not

max /7 | Vi — yu; | < nV°/8k(k + 1).
1

From the previous remarks of this paragraph and Lemma 1 we conclude that
(3.21) BJL-PZ{C}] Z BIL-P{{D:}] — n™""/3

for0 < r <% n > N(, r*), and all ¥, , where N(k, r*) is chosen (as it
clearly may be because n™”® = o(n™"")) to be enough larger than N,(k, r*) to
give the term n™°/3 in (3.21). On the other hand, if any component of p has
magnitude >n"%/8k(k + 1), then with probability 1 — O(n™®) according to
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(34) and (86), T, + p has a posteriori probability <n™"°/2. Hence, the
N (k, r¥) above may clearly also be chosen so large that

(3.22) E(1 — D)PX{D}] — 2n7"°/3 = 0
for 0 < r £ r*, n > N, r¥, and all ¢,. Equation (3.9) follows from (3.21)

and (3.22), completing the proof of Theorem 3.

We remark that ¢ will not be minimax in the sense of Theorem 3 for all r
and fixed finite n. The first nontrivial case is that of n = 3. A tiresome but
straightforward computation in this case shows that, among the procedures ¢,

which for a given number ¢ (0 < ¢ < %) assign probability one to

0 ifzx > Z,

C le1§x<Zz,
go(x) =

1—c¢c fZ, =2 <2,

1 if Z; < =z,

where the Z; are the ordered X, the expression Py{sup.|g.(z) — z| < 2} is
maximized for £ < 2 < Ytatc = 1 (le,byes), fort <2 < ibyc =z and
forl <z=<1lbyanyc =1 — 2z (for z <4, all values of c give probability
zero). Similar remarks apply to the problems considered in the next three sec-
tions. For example, Ey{sup.| g.(x) — x|} in the above example is minimized
by ¢ = [33 — 3(17)"*]/52 = 0.397. Similar calculations are more easily made
in the case studied in Section 4 (where the distribution of the maximum devia-
tion need not be calculated), and such calculations may be found in the refer-
ence cited at the end of that section.

4. Other loss. functions which are functions of distance. In this section we
show that the asymptotic minimax character of ¢» proved in Section 3 may be
extended to a broad class of weight functions. It turns out that it is unnecessary
to start anew in order to prove this; the class of weight functions considered in
Section 3 (see below) is the basic class in the sense that the minimax character
relative to many other weight functions may be concluded from the results of
Section 3 and the integrability result given in Corollary 2. It is clear that the
method of attack used here, i.e., of carrying out the detailed proof of the mini-
max character for the basic class of weight functions and then extending to other
weight functions, can be stated as a general theorem to apply to other statistical
problems; we shall not bother to state this obvious extension in a general setting.

Throughout this section W will represent any nonnegative function defined
on the nonnegative reals which is nondecreasing in its argument, not identically
zero (the case W = 0 is trivial), and which satisfies

(4.1) /0 ) W(rre™" dr <

The main result of this section is the following:
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TaEOREM 4. Under the above assumptions on W,

sup [ W(r) d, Pg{ sup | Salx) — Flx) | < r/A/n}
(4.2) lim Fele = 1.
“ inf sup | W() d, Pry { sup | gix) — F(z) | < r/+/n}

deDy FeF,

As in Section 3 (and for the same reason), an immediate corollary is

CoROLLARY 4. The result of Theorem 4 holds if F, is replaced by F in its state-
ment.

Proor or THEOREM 4. By a reduction like that of Section 3, it is seen that
(4.2) will be proved if, for the sequence {£} of Section 3, we can prove the fol-
lowing three statements, (4.3), (4.4), and (4.5):

lim ¢1nf W(r) d. Pr,g { max | g(a) — F(a) | < r/v/n} dtin
(4.3) n->0 ¢&D,
= lim f W(r) d, Pp {max | Sal@) — F(a) | < r/A/n} dwm

n-»>0

for each positive integer k;

lim fW(r) d, Py { max | Sul@) — Fla) | < r/A/n} dén
@9
= lim / W(r) d, Py { max | Sul@) — a| < r/A/n}

n~>0

for each positive integer k;

0 < lim lim [ W(r) d, Py { sup | Su(@) — a | < r/4/n}

k>0 n->00 ac Ay

(4.5)
= lim f W(r) d, Py { sup |Sn(x) —z| <r/v/n} < w.
(This includes, of course, proving the existence of the indicated limits.)

Firstly, (4.5) is an immediate consequence of (4.1), (2.4), (2.2), the continuity
of G and of the d.f. lim,»«Gs,» , and of Corollary 2.

In order to prove (4.4), we note first that, for fixed k and any F ¢ F,, we have
(similarly to (2.2)) the inequality Pr{maxe.s,| S.(a) — F(a)| < r/4/n} =
G.(r). Hence, by Corollary 2, the integral with respect to r on the left side of
(4.4) is bounded uniformly in n and F. On the other hand, given any ¢ > 0,
there exists an integer Ng such that, for n > Ny, &, assigns probability at least
1 — ¢ to a set of F for which the expressions Pr{ } and Py{ } of (4.4) differ
by less than e for all r (this rests on the continuity in , for = in a neighborhood
of V}, of the normal approximation (for large n) to the joint distribution of the
random variables \/n(Yi? — p;), 1 £ ¢ < k). Since Py{ } is continuous in r,
(4.4) follows.
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Finally, we must prove (4.3). Consider any fixed k. Write Px(r; 2™, ¢) for
the probability, calculated according to the a posteriori probability distribution
of = (given that X = 2 and when &, is the a priori probability measure
on B;) and the probability measure ¢(-; ™) on G (where ¢ ¢ D, and perhaps
¢ = ¢n) of the set of (g, ) in @ X B for which maXe 4,|9(a) — F(a)| < r/A/n.
If (4.3) is false, there exists a value ¢ > 0 such that, for every positive N, there
isan n > N and a ¢, € D, for which (the operation E; being as defined in Sec-
tion 3)

(46) E, / W) d, PE(r; X, 6) < E, f W) d, PX(r; X, 6%) — 2.

It is clear from the preceding paragraphs that there is a real number ¢ > 0
such that W(g) > 0 and

%) B W) d Pi X, 60 <o
q
for all n. Write W,(r) = min(W(r), W(g)). Then (4.6) and (4.7) imply

48) B[ W) d (P X, 6.) — P X, 68} < —.

<0
Since W,(r) = W(g), the integral on the left side of (4.8) is = —W(g). Hence,

(4.8) implies that, with probability at least ¢/W(g) (under (3.6) and (3.4)),
X™ will be such that

@9 [ W) d (P XV, 60)— PO X, 6D} < —e.

Let ¢ = ¢/2W(g). The discussion of the previous paragraph shows that we can
find an R* and M such that, for n > M, the probability (under (3.6) and (3.4))
will be >1 — ¢ that X will be such that

(4.10) PYR*; X™: 0¥y > 1 — ¢.

Let vn = sup:{Pr(r; X™, ¢a) — PE(r; X, ¢%)}. We shall show below that
(4.9) implies

(4.11) u > €.

Then (4.10) and (4.11) (the latter of which is an event of probability at least 2¢
according to (3.6) and (3.4)) will imply that for each N > M thereisann > N
and a ¢, ¢ D, for which, with probability >¢ according to (3.6) and (3.4),
X™ will be such that

(4.12) {Phr; X, ¢0) — Ph(r; X, ¢m)} > ¢

for some r with 0 < » < R* (here r depends on n, ¢, X™). This contradicts
the fact that, with probability 1 — O(n™®) according to (3.6) and (3.4), the
region T, of the last paragraph of Section 3 was seen to maximize with respect
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to p (uniformly in 0 < r £ R*), to within an (added) error of O(n™""%), the a
posteriori probability of T, 4+ p. Thus, it remains only to prove that (4.9) im-
plies (4.11). For fixed n, ¢, , X, abbreviate the bracketed expression in (4.9)
as B(r) — C(r). Let

0 ifr =0.
(4.13) B*(r) =
min (C(r) + ¥a, 1) ifr > 0,

Clearly, B(r) = B*(r). Hence, since W,(r) is nondecreasing in r, we have
(4.14) [ W aBw) = [ W aBre).

Let « be the infimum of values » for which B*(r) = 1. From (4.9), (4.14), and
the fact that B*(r) — C(r) is constant for 0 < r < «, we obtain

e< [ W) aco) - Bo)

(4.15) = f: Wo(r) d(C(r) — B*(r))

s | + W) d(C() — B*@)) + W(O)va + W@

= 2W(Q)'Yn )
which proves (4.11) and thus completes the proof of Theorem 4.
5. Integral weight functions. In this section we consider weight functions
W arising from integration of a function W in the following manner:

(51) Wi, = [ W/ala) - FG)), ) arw).

Here W (y, z), which is defined for y real and 0 < 2z =< 1, is nonnegative and is
symmetric in y and nondecreasing in y for y = 0; it may be thought of as a
measure of the contribution to W7 arising from a deviation of y+/n of the esti-
mator ¢ from the true F at an argument z for which F(x) = z. Typical W’s
which might be of interest are W(y, 2) = |y|” or 0 according to whether or not
a=z=b(herep >0and0 =a <b=1), W,z = 0orl according to
whether |y| = a or |y| > a where a is a suitably chosen constant, W(y, z) =
y'/2(1 — 2), ete.

We now turn to considerations of the asymptotic minimax character of
o with respect to a sequence of risk functions r,(F, ¢) = Er sWa(F, g), where
¢ € D, . (The remainder of the present paragraph will be somewhat heuristic in
order to compare the present problem with those of Sections 3 and 4; the state-
ment and proof of Theorem 5 begin in the next paragraph.) These considerations
are much easier than those of the previous two sections, since in obtaining a
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Bayes solution with respect to the a priori probability measure &, of Section 3
it will suffice (as will be seen below) to minimize with respect to ¢, for each fixed x
(more precisely, for each irrational z),

(52) rinla, 6,67 = [ B, W(/rlg) — Fla, o), Flz, 1) de gl 2, 67);

here B, is as in Section 3, F(z, ) denotes the distribution function of (3.3) for a
given value of # = (p1, - -+, Dr41), and for any measurable subset B of B;, we set

[ 5@, mP2 (67} dgint)
(5.3) En(B, o, 1) =

[, s mPo ) deunte)

where &, is given by (3.6) of Section 3, f(:v, ) = dF(z, 7) / dz (this derivative
exists for z irrational), and P.{t{™} = P (TP = 2,1 £ 4 < k4 1} is the
probability function defined in (3.4). (Of course, ¢ in (5.2) may randomize over
many ¢, which accounts for the presence of the £, operation.) Thus, present
considerations will involve only the obtaining of a (univariate) normal approxi-
mation to the a posteriori distribution (more precisely, to a slight modification
(5.3) of it) of F(x, ) for fixed irrational x, which is much easier than the multi-
variate approximation (3.20) which it was necessary to obtain in Section 3. (We
shall actually use (3.20), which implies easily the needed univariate approxi-
mation; however, the latter could have been obtained more easily directly.)
The above remarks will be made precise in what follows. We hereafter denote
the infimum of 74 (x, ¢, ™) over all ¢ in D, by 7. (z, t™). The set of reals

fz]0<z<eorl —e<z<1}

will be denoted by I. for 0 < ¢ < 3

We now state Theorem 5. Our statement of this theorem is not the most gen-
eral possible. (The set I. may be replaced by other sets where W(y, 2) is large,
the continuity conditions on W may be weakened by considering continuous
approximations to (a more general) measurable W, the integrability condition
may be weakened, and W may be replaced by a distribution (rather than a
density) in z so as to obtain results, e.g., on the estimation of F at a finite number
of quantiles.) Rather, it is stated in a form which allows W to be any of the
functions which would usually be of interest in applications, e.g., any of those
functions given at the end of the first paragraph of this section, ete. (It should be
noted that if the assumptions of Theorem 5 below were altered by deleting (5.5)
and putting ¢ = 0 in (5.4), then such weight functions as y*/z(1 — 2) would be
excluded. The circumlocution of including the condition (5.5) could be avmded in
such cases if one could obtain a sufficiently strong bound on

PU{\/;L Sn(z) — 2] > 7'\/37(1 — )}
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which is independent of z. The difficulty of obtaining such an approximation is
discussed in [4], p. 285.)

TuroreM 5. Let W(y, 2) = 0 be defined for 0= y < «,0 < z < 1 and assume
that W (y, 2) is monotone nondecreasing in y and (to avoid trivialities) that W (y, 2)
is mot almost everywhere zero (in the two-dimensional Lebesgue sense). Suppose
further that (a) to every 2', 0 < 2 < 1, not belonging to an exceptional set of linear
measure zero, and every & > 0 there corresponds e(8, 2') > 0 with the property that
the set of y for which W (y, 2) is discontinuous for at least one z satisfying |z — 2’ | <
(3, 2') has exterior (linear Lebesgue) measure smaller than 8. Suppose also that
(b) for each e with 0 < e < % there is a function V(y, €) such that W(y, z) =
V(y, e fore <z<1—eand 0 £y < « and such that

(54) . fo Vi, eye™ dy < .

Suppose, finally, that (c)

(5.5) ]in(l’ sup | Ey WH/nlSa(z) — 2], 2) de = 0.
€—> n I¢ '
Then
sup ra(F, &%)
5.6 lim —28 =1
(56) n>w inf sup r.(F, ¢)
beDy FeF,

Proor. ra(F, ¢v) is, of course, independent of F' for F in &, . Because of Corol-
lary 2 and the assumptions of Theorem 5, the numerator of (5.6) approaches a
finite positive limit, say L, asn — . For any § with 0 < § < L we may choose
¢ so small that r, .(F, ¢%) tends to a limit > L — & when n — «, where 7.
is the risk function corresponding to loss function W(y, 2) defined by

Wy, 2) ifzel.,
0

(5.7) Wy, 2) = { ifzel,.

It clearly suffices to prove (5.6) with r, replaced by 7., . We hereafter drop the
subscript € on W, and r,,. and (because of (5.7)) may restate whayt is to be proved
as (5.6) under the continuity assumption (a) on W and (replacing (54) and
(5.5)) the assumption that W(y,2) < V(y) for 0 =y < « and 0 <z <1,
where

(5.8) fo Vy)ye ™ dy < .

In what follows we denote (for fixed %, n, irrational x) by P}{A} the prob-

ability of any event 4 which is expressed in terms of T{™ when the probability

function of T{™ is given by
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P{T{P =t;,,1 <42 k+ 1}
(5.9) 1

= (n) __ 4. ;
= s ka(x, ) Po{ Tsi ti,1 St =k + 1} dén(n),

where P, is given by (3.4) and d(k, n, ) is the sum over all (f,, - - , 1) of
the integral on the right side of (5.9). Expectation with respect to the probability
function (5.9) will be denoted by Ex . We now have

/rn(Fy ¢’) dgkn = fo j; E‘lr,d» W(\/;L[g(x) - F(ﬁt, 7")]) F(x’ 7")) d&m(ﬂ') dx
(5.10) o
= /0 E¥rin(z, ¢, TS™) d(k, n, z) dw,

where the last integration (and each integration which follows) is over irrational .
Hence, in order to prove (5.6), it suffices to show that (5.8) and our continuity
assumption on W imply that

1
lim lim | E¥rf.(z, T) d(k, n, z) do
k>0 n-o>w JO

(5.11) ;
= lim [ By W/alS,@) — d,2) d,

n->00 Y0
since the right side of (5.11) is the limit of the finite positive numerator of (5.6).
Let @ be an irrational number, 0 < z < 1, which is a nonexceptional 2’ of
our continuity assumption (a). For fixed ¥ with 1/(k 4+ 1) < min (z, 1 — z),
wemay writex = (4o + 8)/(k +1) with 1 £ 4 =k —1and0 =1t < 1.
Write ¢(r, 0*) = (270)™ exp (—1°/20%). We shall show that, given any z and
k as above and any ¢ > 0, there is an integer N = N (¢, z, k) such that for
n > N we have |d(k, n,z) — 1| < ¢ and such that, for n > N, P} assigns

probability at least 1 — ¢ to a set of T5™ values for which

(5.12) Ten (@, TV) + € > f_ Wy, )q(y, z(1 — z) + k) dy,

where b = (f — ¢)/(k + 1). But, for fixed irrational and nonexceptional z,
the right side of (5.12) tends, as k — o« (and thus, » — 0), to the limit asn — «
of the integrand in the right-hand member of (5.11). The integral of this limit is,
by (5.8), the same as the right-hand member of (5.11). Thus, using (5.12) and ap-
plying Fatou’s lemma to the left side of (5.11), we conclude that (5.11) will be
proved if we demonstrate the statement of the sentence containing (5.12).

For fixed z and k as above and for any e¢ > 0, &, assigns to the set of = for
which |f(z, #) — 1| < e a probability which tends to unity as n — . It follows
that d(k, n, ©) — 1 as n — « and that (noting the relationship between & and
the fi, of Section 3), for any ¢ > 0 and for » sufficiently large, Py assigns prob-
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ability at least 1 — ¢ to a set of values #™ of T%™ for which, writing y; = & /n,
the joint density function of the 3; = \/n(p; — y:) (1 £ ¢ = k) according to
Ein(+, z, ™) in a spherical region centered at 0 in the space of the ¥; and of
probability at least 1 — e according to &, is at least

(5.13) (1 — o@m)™" <kI:Il yz-)_m exp (-— %Ii 73/%) .

Now, in the notation of Section 3, for1 < 7 = k,
FG@/(k+ 1), m) =p1+ -+ + ps.
Hence, if TSP = ny; (1 < i = k), we have (because of the form of (3.3))
Fla,m) =pi+ - 4 piy + Wipr = W1+ -+ + yio + Wiosr)
+ @G e+ Ty + Figr)/V 1

Now, T5#/n tends in probability (according to Py) to 1/(k + 1), and expression
(5.13) with e = 0 is continuous in the y; (in the region where all y; > 0). More-
ever, if we had ¢ = 0in (5.13) and assumed the validity of this expression for all
values of the v; and put all y; = 1/(k + 1), then (1 4+ - -+ + ¥4,) and J41
would, according to (5.13), have a bivariate normal density function with means
zero and covariance matrix
1 (io(lc + 1 — ) —’io)
(k + 1)2\—1 k)’

The corresponding density function of ¥; + -+ + ;4 =+ 4,41 would then be
normal with mean zero and variance

(5.14)

(5.15) [lolk 4+ 1 — 40) — 2tip + &k)/(k + 1)* = (1 — z) + h.

Hence, if we carry through this last argument with the actual form of (5.13) and
its region of validity, we conclude that, for any ¢’ > 0 and for n sufficiently large,
P¥ assigns probability at least 1 — ¢” to a set of values 4™ of T{™ for which,
on a real interval centered at 0 and of probability at least 1 — ¢” according to
£.(-, z, #t™), this last measure induces a distribution function J for

VuF(@, ) — 1+ 0+ Yip + Wis1)] = As (say)

whose absolutely continuous component has a corresponding density (the deriv-
ative of J) whose magnitude is at least

(5.16) (1 — g, z(l — 2) + &)

almost everywhere on this interval of A-values.
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Next, we note that
(5.17)  WVnlgx) — Flz, m)), Flz,m) = W(p — A, 2 + p + Ax/V/0),
where p = Vnlg) — (41 + -+ + Yi, + tyi41)] and
p=—z+ @+ -+ Y+ W)

For fixed z and k as above, denote by « the right side of (5.12). Let 8 be such
that the right side of (5.12) is at least @« — ¢/4 if the limits of integration are
changed to (—8, 8). Let ¢ = W (B, x). Let the § of our assumption (a) be

€¢/8eq(0, (1 — ) + h),

and let 2 = z where x is nonexceptional. Theset 0 < y < 8, |z — 2| = €@, z)
minus a suitable countable set of open intervals of total length <é covering the
points of discontinuity is closed and bounded. Hence, W isuniformly continuous
on this set. Hence, there is a value ¢ > 0 such that W(y, z) = W(y, ) —
¢/4 for |t — 2| £ ¢ and 0 = y £ B but y not in the excluded set. If 0 < y
=< B and y is in the exceptional set, ¥ is in a maximal subinterval of the excep-
tional set of either the form ¢ < y < b with @ > 0 or else of the form 0 = y
< b. Define W(y, ) = W(a, z) in the former case and W(y, z) = 0 in the
latter. If 0 < y < B8 but y is not exceptional, define W(y, z) = W(y, x). If y > B,
define W(y, ) = W (8, z). Finally, set W(—y, ) = W(y, ). The function W
so defined is symmetric in ¥, nondecreasing in y for y = 0, and has the property
that

(5.18) Wy, 2) = W(y,z) — /4  for|x — 2| £ e and all y,
and also that

B
(519) L7 aat,20 = ) + 1 dy 2 a = ¢/2.

Now, let N = N(¢, z, k) be such that, for n > N and with ¢’ = ¢'/4(e + 1),
the conclusion (5.16) holds with the M-interval including the interval (—g, B),
and such that |d(k, n, ) — 1| < ¢ for n > N. Write g for the random variable
defined by putting T5?/n for y; in the definition of u. Since & tends to zero in
probability (according to P¥) asn — «, we may also suppose N to be such that,
for n > N, P¥{la| + 8/v/n < e} = 1 — €. Next, we recall the statement
made immediately following the statement of Lemma 1, that for n = 1 the
conclusion of Lemma 1 holds if the normal probability density is replaced by one
truncated at (—B, 8). We also note that the integral (with respect to A) of this
truncated density multiplied by W(p — ), z) is easily seen (by an argument like
that used to deduce (4.11) from (4.9)) to be minimized at p = 0. We note, as in
previous sections, that if (5.12) is true under the restriction to nonrandomized ¢
(in the definition of 7*), then (5.12) is a fortiori true without this restriction. Thus,
from (5.2), (5.16), (5.17), (5.18), and (5.19), we have for n > N that, with Pj-
probability at least
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(5.20) 1—2>1—¢,
T will be such that

ren(z, TA™)

v

. ,
inf [ , W — Nz + u+ MV — g, 21 — 2) + k) dr
(5.21) > (1 — ¢) inf f_ Z W — N ) — /40, x(1 — x) + h) dA

8
= = &) [ OF(=N ) —€/8la0 a1 = 2) + 1)

> (1 — ) a—3/4) > a—¢.

This completes the proof of (5.12) and thus of Theorem 5.

‘We have not stated a corollary to Theorem 5 of the type given after Theorems
3and 4. For F ¢ § — ., a weight function of the form (5.1) seems less meaning-
ful because the loss contributed at a saltus z of F is measured by W (y, 2), where
z = F(z + 0). There are also certain technical difficulties in that the numerator
of (5.6) need no longer be the same if &, is replaced by §. We shall not bother
with the circumlocutions (e.g., additional restrictions on W) necessary to obtain
a corollary from Theorem 5 in the same trivial manner as such corollaries were
obtained from Theorems 3 and 4.

Theorem 5 implies certain much weaker results which, for special forms of W,
may also be obtained from results obtained by Aggarwal [6]. He considers only
the class C, of procedures which with probability one set g(x) = ™ for Zi® =
x < Z8) , where the {Z{™} are the ordered values of the {X{™}. (Such pro-
cedures have constant risk for F ¢ &, and W of the form (5.1).) For the special
functions W(y, 2) = |y|” and W(y, 2) = |y|"/2(1 — 2) (r a positive integer), he
obtains the best ¢™ explicitly in a few cases and in the other cases characterizes
them as the solutions of certain equations. In the former cases ¢» may be seen
to be asymptotically best in C, . This result is an immediate consequence of
Theorem 5, where the result is proved for the class D, of all procedures, of which
the class C, is a small subclass.

6. Other loss functions; multinomial estimation problems. The results ob-
tained in the previous three sections may be extended to a more general class of
loss functions to which the same methods of proof may be seen to apply. Thus,
for example, in Sections 3 and 4 we could consider the maximum deviation over
a set of z values for which F(z) is in a specified subset of the unit interval (this
will involve techniques like those used in Section 5); the formulation of Theorem
5 already includes weight functions which may (e.g.) vanish for certain values of
F(z), and other modifications (e.g., to consider a finite set of points) are men-
tioned in the paragraph preceding Theorem 5. We may also consider (in Section
4) loss functions such as Wi(r1) + Wa(r,) where r; and 7, are the maximum devia-
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tions over two (not necessarily disjoint) sets of the type mentioned above and
W1 and W, are functions of the type considered in Section 4. Linear combina-
tions of loss functions of this last type and the type considered in Section 5 may
similarly be treated. In all of the above we may replace sup. lg(x) — F(z)| by
sup. [lg(x) — F(x)|h(F(z))], where h is any nonnegative function (suitably
regular), without any difficulty; this includes as a special case maximization over
a subset as described above.

Thus, it appears that our results hold for a very general class of weight func-
tions. It would of course be of interest to subsume all cases under one unified
criterion and one method of proof. In the portion of Section 7 which is devoted
to heuristic remarks, such a criterion (symmetry and convexity of a certain func-
tional) is indicated; unfortunately, it does not include all cases treated above
(e.g., the result of Section 3, which is apparently somewhat deeper), some of
which will be seen in Section 7 to be slightly more difficult to handle than the
symmetric convex functionals. A more general class @ of monotone functionals
for which (perhaps under slight regularity conditions) our results would seem
likely to hold, and which includes the weight functions of Sections 3, 4, and 5
as well as those of the previous paragraph, is also indicated in Section 7. In the
present context, this class consists of nonnegative functionals W of the function
5| defined by 8(y) = g(F '(y)) — y, 0 < y < 1 (where we suppose for sim-
plicity that the possible c.d.f.’s F under consideration are members of &, which
are for each F strictly increasing for sup F*(0) £ y < inf F'(1)) for which
W(s:(y)|) = W(|62(y)|) whenever |8:(y)| = [6:(y)| for 0 = y = 1. However, at
this writing it is not evident how to give a rigorous unified proof (as distin-
guished from the heuristic one of Section 7) even for the class of weight functions
which are convex symmetric functionals (of §, in the present context), let alone
to give one for the class Q.

Another modification is to consider Sup, lg(@) — F(z)|n(z) above instead of
sup; |g(x) — F(z)|h(F(z)). In this case ¢» will not have constant risk over &, .
However, this case is easily treated as follows: suppose for simplicity that A is
continuous and bounded (the unbounded case is trivial and may be treated by a
similar argument). Let J be an interval in which % is entirely within a prescribed
¢ > 0 of sup, h(z). We may for simplicity suppose J to be the unit interval.
Then the risk function of ¢ will attain a value close to its maximum for 7 = U.
The argument of Sections 3 and 4 may now be applied. In a similar manner we
may consider in Section 5 loss functions for which the risk function of é¥ is not
a constant; for example, (5.1) could be replaced by

(6.1) Wi, g = [ WAl — F@),2) )

for a specified function W and measure u satisfying certain regularity conditions.

An interesting question is whether or not our results can be extended to yield
a sequential asymptotic minimax character, e.g., in the sense of Wald [7]. This is
too large a topic to be discussed thoroughly in this paragraph, but a few indica-
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tive comments are in order. An essential idea present in the form of the &, of
Sections 3, 4, and 5 is that, when k is large, a certain multinomial estimation
problem is almost as difficult as the problem of estimating F. This suggests that,
when the weight function considered here is such that the corresponding multi-
nomial problem has (perhaps only asymptotically) a fixed sample-size minimax
estimator (among all sequential estimators), then we may conclude that the fixed
sample-size procedure ¢4 is asymptotically minimax among all sequential pro-
cedures. An examination of [7] shows that such an asymptotic sequential mini-
max property for the multinomial problem will often be easy to prove using
methods like Wald’s.

Finally, the methods of this paper (without the limit considerations as &k — «)
may be used to prove certain asymptotic minimax results for the estimation of the
parameter 7 of the multinomial distribution (3.4) as n — «, for any fixed k.
To see this, we note that, under fairly general conditions of monotonicity and
symmetry of the weight function (similar to those of Sections 3 to 5), the limit-
ing risk function of T5™/n as n — o will be continuous in a neighborhood of the
point of By at which its maximum is achieved. Hence, for any ¢ > 0, there will
exist an interior point Vi of B in a neighborhood of which the limiting risk
function of T™ /n is continuous and at which point the limiting risk of T5™ /n is
within e of its maximum. One can then find a sequence {&.} of a priori distribu-
tions on B (similar to the sequence used in Sections 3, 4, and 5) which assigns to
any neighborhood of Vi a probability approaching one as n — o and which
“shrinks down” on V; at a slow enough rate (see the remarks of the paragraph
preceding that containing (3.6)) to make the a posteriori probability distribution
of the v/n(p; — T5P/n) normal with mean 0 so that T5™/n is asymptotically
Bayes with respect to {£:.}, with integrated risk approaching the limiting risk of
Ti™ /n at Vi . The asymptotic minimax character of T5™ /n follows. We need not
detail the wide variety of weight functions for which this optimum asymptotic
property of the classical multinomial estimator T<™ /n follows from the methods
and the results of the three previous sections as well as of the present section.
It is perhaps worth while to remark that, although the results in Sections 3, 4,
and 5 are stated in terms of deviations of sums ¥n1 + ¥ne + - -+ - ¥u; of com-
ponents ¥n; of the estimator y, from p1 + po + -+ +p; (1 £ 7 £ k + 1), the
given proofs apply with only trivial modifications to weight functions depending
on differences ¢,; — p; . Thus, for example, for any set of numbers ¢; > 0, the
asymptotic minimax character of T{™ /n for estimating = ¢ By, for the risk func-
tion

(6'2) 1'“(7r, ¢n) =1- Pw{l‘l’m’ - pil = CJ'/\/;;': (1 = .7 =k -+ 1)}

follows from the asymptotic normality of the a posteriori distribution, noted
above, and from the convexity and symmetry about ¥, of the set of = (in R**",
not By) satisfying the inequalities in brackets in (6.2). (It is clear from this exam-
ple that V¥ need not be the V; of Section 3.) The result for other risk functions
follows similarly, using the methods and results of Sections 4, 5, and 6.
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These asymptotic results for the multinomial estimation problem do not seem
to have appeared previously in the literature. As indicated two paragraphs above,
some of these multinomial results may also be extended to sequential problems.

7. Convex functionals and monotone functionals of stochastic processes;
heuristic considerations. The first part of this section will be devoted to some
simple remarks concerning convex symmetric functionals of random elements;
these remarks will then be applied to give a short heuristic argument for many
of the results obtained in previous sections.

Let B = {b} be a linear space (or system) and { a random element with range
in B and having a symmetric distribution, i.e., such that whenever A4 is a meas-
urable subset of Bsois —A4 and P{{ ¢ A} = P{¢ ¢ —A}. Let w be a measurable
real-valued convex functional on B which is symmetric (w(b) = w(—b) for
b ¢ B) and convex (w(Ab; + (1 — N)bg) < Aew(b) + (1 — Nw(by) for0 < A <1
and by , by ¢ B). We now note that, since min, w(b) = w(0) > — o so that the
expected value Ew(¢) is always defined, we may conclude that

(7.1) Ew(t) = l;nin Ew( + b)
&B

from the equation (implied by symmetry of P)

(7.2)  Eo(t +b) = Bo(—¢ + b) = 3E{w + 1) + o(—¢ + b)}
and the equation (implied by symmetry and convexity of w)

(7.3) o +b) + o(=¢+b) = 0+ b) + o — b) = 20().

We shall now apply (7.1) to the “tied-down” Wiener process (see [2]). B is
now the space of continuous functions b(f) on the unit interval 0 < ¢ < 1. The
probability measure P assigns probability one to the subset B, of elements b of
B satisfying b(0) = b(1) = 0. The measurable sets are generated by all sets of
the form {b|b(ts) < ao} for 0 = &, = 1 and a, real. The joint distribution of
¢@), --- ,¢@) forany 0 < 4 £ -+ £ t, < 1 is normal with E¢(s) = 0 and
E{¢(s)¢(®)} = min (s, t) — st for 0 = s, ¢ = 1. Note that the distribution of ¢
is symmetric.

Let W be any symmetric real-valued convex function on R'. Then

W (max, |b()|)
is a convex functional _of b and (7.1) implies that
(7.4) EW (max, |¢(?)|) £ EW(max, [{(t) + o()])

for all continuous functions p. Generalizations of this result to the case where
max; is replaced by maxh(t) in the manner of Section 6, or where p is allowed to
be of a more general class than the continuous functions, are easily achieved by
adjoining additional functions to B. One may also note that, for every r» > 0,

(7.5) P{max, [f()] > r} = P{max, [¢(®) + o(®)] > r}
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for all continuous (or more general, as noted above) functions p. However, this
cannot be proved in the same manner as (7.4), since the characteristic function
of the subset of B for which max; |b(f)] > r is not a convex functional on B.
The validity of (7.5) follows, however, from (2.4) and Lemma 1. This strong
result of a domination of an entire distribution function in the sense of (7.5) is
deeper than the result (7.4); for (7.5) requires (in the proof of Lemma 1 in [8]) not
merely the symmetry of the probability distribution, but also the convexity for
every u > 0 of the set where the joint density of {(t1), --- , {(%) (for any k
and ¢, -+, &) is =u. (Note, for example, that it is not necessarily true for a
symmetrically distributed real-valued random variable X that P{|X| > r} <
P{|X + p| > r} for all real p.) Similarly, the result (7.4) for real functions W (z)
on the nonnegative reals which are nondecreasing in 2 for z = 0 (but not neces-
sarily convex) is a consequence of (7.5) but cannot be proved directly in the
manner of (7.4) for convex W. Thus, to summarize, (7.4) for convex W follows
from the symmetry of the probability measure, while in proving (7.4) for non-
decreasing W (and, in particular, (7.5)) we use the additional assumption on the
probability measure which is used to prove Lemma 1. We note that it has not
been necessary to assume any integrability condition here.

It is interesting to note that, for the special case of a linear function p(¢) =
¢ + dt, the right side of (7.5) is given by formula (4.3) of [2] witha = r — ¢ —
db=r—ca=r+c+d,f=r-+c(unlessa =20,b>0,a=0,8>0,
the probability in question is unity; our {(f) is Doob’s. X (¢)). It does not seem
completely apparent from the form of (4.3) of [2] that this expression, with the
above substitutions, is a minimum for ¢ = d = 0. The same is true of expecta-
tions with respect to the d.f. (4.3) of [2] of functions W of the type considered
above.

Next, let the real-valued function W(y, ) be symmetric and convex in y for
each 2 (—w <y < «©,0 = 2z = 1) and satisfy obvious measurability condi-
tions. Let u be any measure on the unit interval. Then

(7.6) w(b) = fo Wb(t), £) dult)

is a convex functional on B and hence (7.1) holds. In this case the result for the
case where W(y, 2) is symmetric in ¥ and nondecreasing in y for y = 0 (but not
necessarily convex for each 2) is not much more difficult, although it cannot be
handled by using (7.1): we need only apply Lemma 1 for n = 1 for each fixed z
in this case in order to obtain the desired result.

More general convex functionals (such as combinations of the two varieties as
treated in Section 6) or nonconvex functionals with certain monotonicity proper-
ties may be handled, similarly, by using (7.1) or consequences of Lemma, 1 similar
to (7.5), respectively. It is possible that the conclusion (7.1) holds for the class
© of (not necessarily convex) functionals w which are nonnegative, for which
(@) = w(¢]), and for which w(|f1]) = w(|¢:|) whenever [{1(f)] £ |¢2(8)] for all ¢.
Similarly, results on processes other than the tied-down Wiener process, whose
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distributions are symmetrical or also satisfy the property which (as mentioned
above) is used in [8] in proving the more general form of Lemma 1, may be
obtained by using (7.1) or the generalization of Lemma 1 in [8], respectively;
We now turn to a heuristic argument for the results obtained in previous sec-
tions (except for certain results of Section 6, as noted below). This discussion
may also be thought of as an outline of one intuitive explanation of why these
results hold, the epsilontics and use of Bayes solutions in the previous sections
supplying the needed rigor. However, the discussion which follows does not use
Bayes solutions, and it would certainly be worth while to obtain an independent
argument which would show that in the limit one need only consider “limiting”’
decision procedures of the type considered below, and thus to conclude that the
argument which follows can be made rigorous by means of only brief additions.
In the previous sections we were concerned with estimating (for various weight
functions) an unknown element F of &, . Denote by g.(z; X‘™) such an estimator
of F(z) based on X™ (for notational simplicity, we have considered a non-
randomized ¢, ¢ D,). Suppose we could show that for our considerations, at least
asymptotically, it is only necessary to consider functions g, of the form

gn(z; X(n)) = ¥a(Sa(2)),

i.e., procedures in the class C, mentioned in the last paragraph of Section 5
(this is one of two crucial gaps in our heuristic argument, for it is not obvious
how to give a short proof, which in no way depends on the results of Sections 3
to 5, of this supposition). Procedures in C, will have constant risk for F' ¢ . and
for any of the weight functions of Sections 3, 4, and 5 (and those of Section 6
for which ¢ was not remarked to have constant risk). Thus, we may consider
the distribution of the random function ¥,(S.(f)) — ¢ for 0 < ¢ < 1 where
F = U. Write ¢u(2) = 2 + pa(2)//n. Then

If we could now suppose (and this is the other crucial nonrigorous development)
that there is a sequence {¢,} of minimax procedures (for n = 1,2, ---) such
that the corresponding sequence {p.(2)} has a continuous limit p(z) uniformly in
z as n — o, and note that p,(S.(f)) would then be bounded (for = sufficiently
large) and would tend to p(¢) with probability one as n — o, then by [2] and [3]
our consideration of \/n[¥.(S.(t)) — ¢] would be reduced, asymptotically, to
that of ¢(t) + p(t). The earlier comments of this section would then yield the
desired asymptotic minimax properties of ¢} .
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