ON SEQUENTIAL DESIGNS FOR MAXIMIZING THE SUM
OF n OBSERVATIONS'

By R. N. Brapr, S. M. JoHNSON, AND S. KARLIN

1, Introduction. An important simple type of sequential design problem is
ag follows: We have two binomial random variables, X and Y, having param-
eters under the two hypotheses, H; and H,, given by

X Y

) H, P q
(1 - f) HZ q D,

where ¢ is the a priori probability that H; is true. We wish to maximize the
sum of n observations. The procedure for selecting an. X or Y observation at
each stage, of course, takes account of all the previous history.

A more realistic version of the design problem deals with the situation such
that X and Y have parameters p and g, respectively, where an a priori distribu-
tion F(p, q) is known. The problem holds interest for several reasons. It would
appear to be one of the simplest problems in the sequential design of an ex-
periment that can be posed; hence its analysis is a step towards obtaining a
body of information relative to specific sequential design problems. It has not
only this general interest but also, as it stands, it has applications in particular
problems such as learning theory, biology, and medicine; see [1], for instance,
in which applications in the latter two fields may be found. A discussion of
problems of this general variety and of certain strategies has been published
by Robbins [2]. More immediately, in the final section of this paper it is shown
that the solution to the problem in which p has a priori distribution F and ¢
is assumed known, explicitly obtained in Section 4, yields directly the solution
of a problem in industrial inspection.

The type of problem known as the “Two-armed Bandit” is a special case of
the preceding. In its “classical” formulation (whence the name), we have a slot
machine with two arms, an X-arm and a Y-arm. When either arm is pulled,
the machine pays off either one unit or nothing; and the probability of winning
with one arm is p, and, with the other, ¢. A priori it is unknown which is which,
but the probability ¢ that it is the X-arm which has probability p of success is
assumed known. One is allowed n plays, and a sequential design, or strategy, is
desired which will maximize the expected winnings.

We shall use here for intuitive concreteness the gambling interpretation and
terminology.

It has been conjectured for this problem that the optimal strategy is S; : on
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each play choose the arm having, at that time, the maximum expected proba-
bility of paying off, i.e., play each time as though there were but one play re-
maining. This conjecture has been verified to hold for n = 8.

The “Two-armed Bandit’’ problem can be generalized in two directions. The
random variables may have distributions other than binomial. Sufficient condi-
tions that S; be optimal are given and it is shown that, for the binomial case
following S; , the expected winnings per play tend to max[p, ¢] as n — .

The other direction of generalization was the problem as originally introduced:
X and Y are binomial with parameters p and ¢ having a priori distribution
F(p, q). In Section 3 it is shown that several properties which one intuitively
expects the optimum strategy to possess are not, in general, characteristics of
the optimal strategy—e.g., for p and ¢ independently distributed, if only = is
sufficiently large, S; is not optimal; the optimal strategy may not stay on a
winner; and the expected gain on the r-th play is not necessarily a nondecreas-
ing function of r. Also, S, the strategy which maximizes the expected winnings
over the next k plays, is not always an improvement over Si_; .

In Section 4, the parameter ¢ and the a priori distribution F(p) are assumed
known. In this case the optimal strategy is determined explicitly and is shown
to have those intuitive properties which have been previously noted not to be
general characteristics of optimal strategies. These results are applied, in the
final section, to obtain the optimal procedure in a certain industrial inspection
problem.

2. The “Two-armed Bandit.” 2.1. The statistical problem which goes under
this general title is that of finding a design which will maximize the sum of »
independent observations in the following situation: Let X and Y be real-
valued random variables having cdf’s F; and G, respectively, under hypothesis
Hi 3 = 1, 2) and { be the a priori probability that H; is the true hypothesis.
The problem is to devise a sequential design which will maximize the expected
value of the sum of n observations, each of which is to be an observation either
of X orof Y.

Let f; and g; be the densities corresponding to F; and G; with respect to the
measure ¥. Let W,(¢, S*) denote the expected value of the sum of the n ob-
servations if { is the a priori probability for H; and the design, S*, is used. If one
observed X first and then continued for n — 1 steps following the optimal rule
S*, then the expected sum would be

A=t [g@av+ -0 [ 60 av
2.1.1) )

® $hi()) * -
s (i 8 600 + (1 = 050 o

Similarly, if ¥ were observed first and the optimal rule followed for the re-
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maining n — 1 steps, the expected sum would be

Bo=t [ w@ay+ -0 [ w0y
(2.1.2) N )

® £91(?) *) _
Hence, W.(¢, S*) = max(4,, B,).

A natural design to be considered is that which requires that one maximize
step by step—i.e., after the j-th observation, the a posteriori probability, ¢;,
is computed; and at the next step, the random variable corresponding to the
maximum of

[ 050 + @ = 601 dv
and ’
[ 500 + 0 = £on ag

is observed. Denote this stepwise maximization design by S; .

TreoREM 2.1. If the likelthood ratios f,/fi and go/g1 have the same distributions
under H, and also under H, , then S, is the optimal design.

Proor. Since

1 . .
. - ;_ : ?%; if X is observed first,
1
1) fr= 1
..___1_.__._-_(_) if Y is observed first,
14 L S0
¢ )

and the likelihood ratios have the same distributions, the distribution of ¢; is
independent of which random variable is observed first. Hence, the expected
value of the optimal yield from the last (n — 1) steps is independent of the
choice for the first step. One can, therefore, maximize the expected sum of »
observations by choosing at the first step the random variable having the larger
expected value and continuing with the optimal design for the remaining steps.
Since all the random variables are assumed to be independent, the same
argument shows that, given {;, it is optimal to follow S, for the (5 + 1)-st step.
An example in which the likelihood ratios are distributed alike is:

X Y
H, N@©, 1) N, 1)
H, N(ﬂ'y 1) N(07 1) (I"' > 07 v > 0)7
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with u = ». However, it can be shown that forn = 2and (1 — ) p = ¢v, S,
is optimal only if p =

2.2. A special case of the “Two-armed Bandit” of widespread interest (the
“classical” case) is that in which the random variables have binomial distribu-
tions with parameters given by:

X Y
H p g
H, q P.

A second example in which the likelihood ratios are distributed alike is fur-
nished here if p + ¢ = 1. Hence, for that case, S; is the optimal design. Indeed,
it is a conjecture that for any choice of p and g, S; is optimal; it has been verified
to be for n < 8. Optimal or hot, S; has the desirable property of being con-
sistent; i.e., Theorem 2.2 holds.

TaroreM 2.2. Following the design S:, the expected value of the average of the
first n observations converges to max(p, q) as n — .

Proor. Assume p > ¢. Then

g+ -9t forg=3
1 W1 y S1 =
W 5 {—(p—q)r for ¢ < §;
andif ¢ = 3,
Walt, 89 = Wilt, 8) + Wan (P 2 1)) PiX = 1)
@)
- pk _ o).
+ Was (P;(X £ 0)> PyX = 0);

while if § = 3,

. Wale, 50 = Wile, 59 + Wars (s ) PR = D

(-9t _
+ Wn—l (WI—’TO)) P{(Y = O),
where Py(Z = ¢) = ¢tP/(Z = ¢|Hy) + (1 — $)P(Z = c| H3).

W, is clearly convex, symmetric about { = 3%, and continuous. So is W,
since by an inductive argument, W, is symmetric about 3, (2) and (3) are con-
tinuous, and each (by formal differentiation twice) is convex. Also it is easily
seen that W,(¢, S1) = nl(p — ¢)t + ¢] for ¢ near 1.

Let a.(¢, S1) = 1/nW.(¢, Si). Then an is convex, continuous, and bounded
above by p on [0, 1]. Furthermore, Ia,.(g‘, S1)| < p — ¢. As a consequence of a
more general result below, Lemma 3.3, a. is nondecreasing in n. Hence, a({, S1) =
liMpeew @a(¢, S1) exists and is convex and continuous on [0, 1]. Moreover, since
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na,(¢, S1) satisfies (1) and (2),

ps _ Q- px _
a (P;(X = 1)) BE=1+a (P;(X = 0>> P(X = 0)
tzh,
(4) a(;‘, S) =
_ % - (- g5 -
o () P¥ = 0 + o (g 2ty) P =0
k £ 53

Suppose that the minimum of a(f, S1) is assumed at {0 = 3. Then it also
assumes its minimum at p¢o/Pr,(X = 1) > to. By iteration, it assumes its
minimum at (p")/[p"¢e + ¢"(1 — &o)], which tends to 1 as n — . Hence,
¢o could be taken to be 1. If, on the other hand, {» < %, the analogous procedure
shows that ¢, could be taken to be 0. Thus, the minimum of a(¢, S1) is assumed
either at 0 or 1. But a(0, S;) = a(1, S;) = p, which establishes the theorem.

3. A generalized “Two-armed Bandit.”? This section is concerned with the
Bayes problem of maximizing the expected number of successes in n trials
when at each trial we are free to choose between two binomial random vari-
ables, X and Y, whose probabilities of success, p and g, respectively, are un-
known, but a known a priori distribution, F(p, ¢), is specified.

The special case where F(p, ¢) concentrates at the two fixed points (p, ¢) and
(¢, p) with probabilities ¢ and 1 — ¢, respectively, leads to the “classical”
problem considered in Section 2.2.

Let S denote a strategy for choosing between X and Y and W.,[(p, q), S] de-
note the expected number of successes in following S for n plays for given p
and ¢. Then the expected number of successes is

3.1) mmm=ﬂﬁmm¢mwmﬁ

We will find it convenient sometimes to express this as W,(dF, S). The best
strategy is the one maximizing W,(F, S). Since n is finite, the maximum exists.

Example 1. Suppose p + ¢ = 1 with probability 1;i.e., F(p, ¢) is of the form
F(p, 1 — p). In this case a success or failure of X is equlvalent to (glves the
same information as) a failure or success with Y, respectively.

8; is optimal in this case; for let Fi1(p, ¢) denote the a posteriori probability
after (k¢ — 1) plays and S,_: the optimal'strategy for (n — k) plays. Then using
X followed by S, yields

fdek—1+ Wn—k(dek—l,Sn—k)fdek—l

+ Wa(l = P) dFus, Sod) [ (1 = 2) dFes,

2 This section represents an extension of some preliminary work by S. Johnson and
8. Karlin at The RAND Corporation.
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and using Y followed by S, yields

f qAdFiy + Woilq dFi1, Sni) f qdFy.

+ Wa((1 — @) dFre1, Sns) f 1 —q)dF,.

Since ¢ = 1 — p, X is the optimal play if and only if [pdFiy = [qdFi;
i.e., S; is optimal. This example is related to the result of Theorem 2.1, which
embraces a special case of F(p, ¢) = F(p, 1 — p).

3.1. Our first task is to obtain the complete strategy for n = 2 when the a
priori distribution is F(p)G(q). It is important to notice that, if the number of
trials is n, then only designs which are functions of the first n moments, 3, - - -,
pn of Fand pi, -« -, un of G, need be considered. This is a consequence of the
fact that the expécted yield for any strategy is an expression involving at most
these moments. Thus all strategies describing a first move can be expressed in
terms of functions T;(u1, -+ , tin, 1, * - - , ua) such that if

’ ’
Ti(l-‘li""”n’l"l"”,l‘n) = 0,

then X is chosen at the first trial; otherwise Y is used first.

Suppose for definiteness that u1 = u1 ; we determine necessary and sufficient
conditions that X be used first when » = 2. Using the fact that on the last trial
one chooses the random variable having greatest expected value, if X is used
first the expected yield is

6)) p 4 m <&> 4+ (1 — m) max {ui,"ll — "2}.
B - m

lowed always by X, which is better than Y followed always by Y. Of the other
two strategies starting with ¥, the one requiring X if ¥ = 1 has expected yield
2ut + ppt — pz, which can be shown to be less than or equal to that for the
strategy requiring Y if ¥ = 1, namely,

Since (1) = 2m = m + w1 = 2u1, X followed by optimal is better than ¥ fol-

2 pr+ pe 4+ (1 — p)m .
Upon comparison, (2) = (1) if and only if
(3.1.1) either ps = ps oOr g + mp = p1 + p2.

Combining and rewriting in a symmetric form, we have
Lemma 3.1. If n = 2 and p and q are independent with moments u; and u;,
then X s used on the first trial if and only if

max{ps — pip, p — p1} = maxfus — ppr, g1 — m}.

Our next theorem shows that in almost all circumstances of independent a
priori distributions for p and ¢, the optimal design and S; cannot agree.

TuEOREM 3.1. If p and q are independent with a priori distributions F(p) =
[8 ¢(t) dt and G(q) = [3 ¢(b) dt, where ¢ and Y are continuous and positive for
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0 <t < 1, then there exists an n such that for n trials, the optimal design does
not agree with Sy .

Proor. (By contradiction.) Suppose for definiteness that 1 > [§ to(t) dt =
b2a= [ o ty(t) dt. According to S; it is clear that X is used first and, by the
Schwarz inequality, that we do not change random variables if a success occurs.

It is easily shown, in view of the hypothesis on ¢, that if » and s tend to in-
finity so that r/(r + s) — &, then

fo 1 1 — %) dt

fo Y — ') de

(1) - .

(This can also be obtained as a consequence of the law of large numbers where
the relative frequency of success tends to & .) Hence, taking & > a + ¢/2, we
can choose r and s so that

fo ' L — £ dt

1
f 1 — 0@ dt
0
Furthermore, ¢ may be chosen sufficiently small that also

f £o(t) dt > [ f te(t) dt]2 + 3.

Now let n = r + s 4+ 2 and suppose that the first r plays resulted in suc-
cesses with X and the next s plays were failures with X. This agrees with the
procedure prescribed by 8; and has positive probability of occurrence. There
are now two plays left and, from (2), S; requires X on the next step. However,
Lemma 3.1 gives necessary and sufficient conditions that the use of X is opti-
mal and we show that these are violated.

There are two steps left and the a posteriori probability distribution is
F'(p)G(g) where

r
r+s

>a for¢ = 0 and 1.

2) <ea+t e>

—a

lp’(l — p)*¢(p)
fo (1 — )¢ dt

(o) = and GG) = [ ) a

On account of (2),
1 1
[ »are) > [ ovte) g
0 0

and on direct calculation it is seen that both of the inequalities of (3.1.1) are
violated. Hence, following S, , we arrive at a nonoptimal yield, and the theorem
is established.

3.2. S; may be described as that procedure requiring at each step the random
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variable that would be optimal, were there but one trial remaining. In a similar
spirit, let S; be the strategy which requires at each trial the random variable
that would be optimal were there j trials remaining, with the understanding
that if fewer than j trials remain, then the optimal procedure is followed. (The
strategy S. for p and ¢ independent is determined by the relations given in
Lemma, 3.1.)

We have, thus, a sequence of strategies, S;, Sz, -+, S, . For a series of n
trials, S, is the optimal strategy and hence W.(F, S,) = Wa.(F, 8;) for all
j < n. Intuitively one might expect that the W,(F, S;) are nondecreasing in
73 1.e., the more steps ahead we take into account, the better the strategy. How-
ever, it can be shown that there exist a priori distributions such that for n = 3,
W3(F, 81) > W3(F, ;). The details are omitted.

3.3. The next principle examined is that of “staying on a winner’’: Does the
optimal strategy have the property that whenever a success occurs, the same
random variable is required on the next trial? S; , for instance, has this property.
However, it is not always a characteristic of an optimal strategy, as the follow-
ing example shows.

Suppose F(p, q) concentrates probability 0.8 on (0.1, 0) and 0.2 on (0.9, 1).
It can be shown that for this example we must stay on a loser but switch from
a winner for the case of n = 2.

A property related to the intuitive notion of staying on a winner is that of
“monotonicity,” which we discuss for p and ¢ independent. Let S*(n, F@)
denote the optimal strategy for n trials against a priori FG and let dF* =
pdF/fpdF and dF¥ = (1 — p)dF/ [(1 — p)dF, with G° and G’ similarly
defined. S*(n, FG) will be termed monotone if:

(i) S*(n, F'G) allows X first = S*(n, F°G) requires X first,
(i) S*(n, FG’) allows Y first = S*(n, FG°) requires Y first,
and

(iii) S*(n, F°Q) allows Y first = S*(n, FG") requires Y first.

For instance, (i) is to be thought of as: if a prior “free” observation of X were
allowed, then, if we might use X on the first trial, even if X had failed on the
prior trial, we should certainly use X on the first trial, if the prior trial had
resulted in a success with X.

Lemma 3.2. If for 1 £ k £ n — 1 and for all F and @, S*(k, FG) is mono-
tone, then S*(n, FG) stays on a winner.

The proof is omitted. ‘

With the aid of the results of Lemma 3.1, it can be verified directly that, for
n = 1 and n = 2, the optimal strategy is monotone and, therefore, for n = 3
and p and ¢ independent, the optimal strategy stays on a winner.

The general monotonicity property for independent parameters remains an
open question.

3.4. In using any strategy, S, let Z, = 1 if the random variable used on the
r-th trial wins, and Z, = O otherwise; i.e., Z, is the contribution of the r-th
trial. The last property considered is whether, for 8* denoting the optimal S,
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E[Z, | 8*] is monotone increasing in r. We show first that E[Z, | 8] is non-
decreasing in r, and second that E[Z, | S*] may decrease.

LemMma 3.3. E[Z, | 8.] is nondecreasing in r for every initial distribution F.

Proor. It is enough to prove the result for the first two trials. Suppose
Z, = X, then E[Z, | 8] = [p dF. But E[Z, | 8\] = E[E[Z,| Z,, S]] =
E[EX | Z1, 8] = E[Z:] 8.

In contrast to this result, consider the case of n = 3,

F(p) = p’Q — p)¥/p°(1 — p)* dp,

and G(g) = q. For optimal return, X should be employed first with expected
return from the first trial of 0.6. If success results, then X is used again, while
if failure occurs, then the criteria of Lemma 3.1 require Y. The a priori expected
yield from the second trial is 64/110 < 66/110 = 0.6.

4, The case of one known and one random probability of success. In this
section we examine in detail the situation in which X has a binomial distribution
with p = Pr(X = 1) unknown but selected by a known a priori distribution,
F, while Y has a binomial distribution with known parameter, g.

The results of the preceding section were informative largely in a negative
sense; there are many nice properties which optimal strategies do not possess.
Many properties which seemed obvious but which were not in general enjoyed
by optimal strategies in the general case, are held by the optimal strategy when
one of the random variables has a known distribution. Hence, the rather de-
tailed proofs in this section.

We establish a series of lemmas describing some properties and the form of
the optimal strategy and then obtain an explicit statement of it.

LemMa 4.1, If Y is required at any trial according to an optimal strategy, then
Y is required thereafter.

Proor. First, it is easily seen that if at any trial ¥ is required, then the
optimal choice for the next trial is independent of whether ¥ wins or not.

Now suppose that at some trial, let us say at the first one, Y is required
and is used r times, but that X is allowed on the (r + 1)-st trial. Then the
expected winnings are

1 v 1

W gt Wars®0) [ pdF + WaraP,) [ (1= p) aF,
where F* and F’ are the a posteriori probabilities defined in Section 3.3, and
Wi(F, q) is the expected gain against a priori F in k trials pursuing an optimal
strategy. But using X first followed by r trials of Y yields the same amount,
contradicting the fact that ¥ was required on the first trial. Hence ¥ must be
required throughout.

As a consequence of Lemma 4.1, we can characterize an optimal strategy.
We use the notation

1
y,-=f P dF.
0
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LeMMA 4.2. There exists a function, Q, of n and F such that for n trials remaining
and F the a prior: distribution of p at that time, Y is required <f and only +f ¢ >

Qn, F).

Proor. From Lemma 4.1, Y is required if and only if
1) ng > w4 m WaalF, @) + 1 — p)War(F/, ¢) = nKa(F, g).

Now Wiy(F, ¢) = max {g, m} and hence is nondecreasing convex in ¢ for all F.
By easy induction, W.(F, ¢) is nondecreasing convex in ¢ for all F and » and,
hence, 50is K.(F, ). Since KA(F,0) = w1 > 0 and K,(F,1) =1 — (1 — p)/n
< 1, it follows that for each n and F there is a point Q(n, F) such that ¢ >
Q(n, F) if and only if ¢ > Ka(F, g)—i.e., if and only if Y is required.

We shall adopt the convention that if ¢ = Q(n, F) we shall always use X,
giving us a definite optimal strategy:

If ¢ > Q(n, F), use Y for all n trials. If ¢ = Q(n, F), use X on the first trial
and compute the a posteriors distribution of p, F', and compare q and Qn —1,F"),
following the above rules for choice at the second trial, etc.

Having characterized the optimal strategy, we turn to a series of lemmas
describing more precisely its form and properties.

Lemma 4.3. Forall Fandn = 2,Q(n, F) 2 Qn — 1, F).

Proor. Suppose the contrary. Then for Q(n, F) < ¢ < @(n — 1, F), Y would
be required on the first trial and X on the second, contradicting Lemma 4.1.

Lemma 4.4. For all F, g, and n,

Wa(F', q) = WalF, ) 2 Wa(F, g).
Proor.
I: ¢ = max{Q(n, F’), Q(n, F), Q(n, F")}.
Then ng = W.(F*, q) = Wa(F, q) = W.(F’, ¢).
II: ¢ < min{Q(n, F’), Q(n, F), Q(n, F)}.

We proceed by induction. The lemma holds for n = 1, since for all g and F,

1) max {q, '12} = max {g, m1} 2 max {q, b=l
M1 - #lj

In the case under consideration,
(2) W"(F.’ q) =E + & WW—I(F"7 Q) + (1 - ’i2) Wn—l(F’f’ Q) =& + A,,
M1 b1 M1 M1

) WauF,q = m+ mWaa(F',q) + (1 — I-‘l)Wn—l(ny q) = m + Ba,

W, g =" = By (F" )
@ 1l—=m 1=—m
+ (1 -8 “’) War(F”, q) = 5=22+ C..
—

1’—‘[1.1
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By the induction hypothesis,
(5) Wora(F*, @) 2 Warr(F', q) = Wanr(F”, q)
= Waa(F", @) 2 War(F, q) 2 Waa(F”, g);

and it is easily shown that since

1 1—'#1’

A, = B, = C, . Thus the lemma is established for this case.

As a consequence of Case II, Q(n, F') < min{Q(n, F), Q(N, F*)}. Forif (say)
Q(n, F) = min{Q(n, F), Q(n, F')} < Q(n, F’), then for ¢ = Q(n, F), ng =
Wa(F, @) < W.(F’, q), a contradiction of the case just established.

III: Q(n, F’) < ¢ < min{Q(n, F), Q(n, F*)}.

Then W.(F, ¢) = ng < min{W,.(F, q) Wa.(F°, ¢)}. But by induction argument
parallel to that for Case II, it is shown that W,(F, ¢) £ W.(F", q).

From Case III it follows by the same reasoning as above that Q(n, F) <
Q(n, F*). Hence, there is only one remaining case.

IV: Q(n, F') £ Q(n, F) < g < Q(n, F").

Immediately, W.(F’, ¢) = Wa(F, 9 = ng = W,.(F°, q), and the lemma is
established.

Interspersed in the proof just completed is the proof of

LemMma 4.5.

Q(n, F') = Q(n, F) < Q(n, F).

Lemma 4.6. Following the optimal strategy, if a success occurs on any trial,
then the same random variable is used on the next trial—i.e., stay with a winner.

Proor. In view of Lemma 4.1, we need only show that if X is required and
wins, then X is required on the next trial. It is clearly sufficient to show this
for the first trial. Suppose to the contrary that Q(n, F) = ¢ > Q(n — 1, F*).
By Lemma 4.3, Q(n — 1, F') =2 Q(n — 2, F") = --- 2 Q(1, F*) and, clearly,
Q(1, F°) = ps/m > m. Hence, ¢ > .

By Lemma 4.5, ¢ > Q(n — 1, F’) also. Consequently Y is required on the
second trial, regardless of the outcome of first. Then

1) ng £ Wa(F,q) = m+ (n — 1)q.

Hence, ¢ = w , and we have a contradiction.

Lemma 4.7. The a priori expected value of the yield on the r-th step is nonde-
creasing in r when using an optimal strategy.

Proor. The proof can be obtained with the aid of the foregoing lemmas; it
is left as an exercise for the reader.
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As we have noted in Section 3, Lemma 4.7 is not true, in general, while Lemma
4.6. is the “stay on a winner” rule which, appealing as it is, does not hold in
general.

With the above lemmas we are in a position to determine explicitly the value
of Q(n, F). Assume that ¢ = Q(n, F); then the optimal strategy has the follow-
ing form for appropriate k; .

(4.1) (A) Observe X until a failure occurs. ,

(B) There exists an integer k1 = 0 such that if at least k; successes
preceded the first failure, continue with X; otherwise switch to Y for the re-
maining trials.

(C) There is an integer k, = 0 attached to the second failure such that
if at least k1 4 ko successes with X precede the second failure of X, continue
with X'; otherwise switch to Y for the remaining trials.

(D) In general, let S, be the number of successes that precede the r-th
failure of X. If S, = k1 + k2 --- + k., continue with X; otherwise switch to
Y for the remaining trial.

Thus, any sequence k = (k1, ks, - -+ , ko) of integers, 0 < k; < n, corresponds
to a strategy of the same form as the optimal.

Let E; denote expectation given k and F, and E;, denote expected value given
k and p.® In using any strategy for n trials, X will be used a certain number,
N., of times, and there will be a certain number, S,, of successes with X;
similarly for Y.

THEOREM 4.1.

Qn, F) = max {ik[[zéj}

Proor. ¢ = Q(n, F) implies ng = W,(F, ¢). But since the optimal strategy
corresponds to a sequence k, this is equivalent to ng = max,{Ei[S,] + Ei[S,]}.
However, Ei[S,] = ¢Ei[N,], and neither Ei[S,] nor E[N,] depends on ¢q. Hence
g = Q(n, F) implies each of the following equivalent statements: ng =
max{Ei[S:] + qE:N,]} © q = Ei[S:)/Ei[N.] for all & with equality for some <
g = max; Ex[S.)/Ew[N.].

COROLLARY.

j;xEkp[N dp dF| L‘ (n — EuIN,D)p dF

= ma
k

Qn, F) = mkax

1 X371
fo B[N dF [o (n — BwlN,]) dF

3 The authors are indebted to the referee for suggesting the following derivation of
Q(n, F), which is somewhat simpler and more illuminating than that originally used to
obtain the result.



1072 R. N. BRADT, S. M. JOHNSON AND S. KARLIN

We give two methods of evaluating Q(n, F). The first proceeds by obtaining
directly a formula for E,[N,] and yields

Ekp[Ng] — jZ: (n _ j)pH(j)—l(l _ p)¢(i)+l
-1

b
- | — kr - y = 1
DDk MI])I_I (kiﬂ + fi — 1) ’ =1 r=1 !
=0 f" . $()~-1 ?
#(5) — ; F /

/

(4.2)

where ¢(j) = max{i:> y.1 ks + ¢ < j} = number of failures of X in the first
(7 — 1) trials and ) _* denotes the sum over all choices of fi’s such that fi = 0:
fi=0,ifkiys = 0, fo = 0; D inafi < v and 3_.f; = ¢(j) (f: denotes the number
of failures between the (k1 + k; + --- ki)-th and (k; + ky + --- + kip1)-th
success).

The second proceeds by obtaining directly a formula for Ej,[S,] = Ej,[N. 2ID.
While more complicated in appearance and derivation, it is the result of a
direct counting.

(4.3) B8] = 22058

where
] G R
S S R Gu) R e |
pot TETHE ) e (o)
[ (i) (rrn B )
b,
| p”—‘é‘k‘—'] pHE (L — p)

withb, = r —ay — as — --- — a,, and we interpret(Zi) = 1 and <_f1) =
0, for¢c = —1.
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Some special cases are worth noting:

f (p + p’) dF
Qe = —
fo (1 + p) dF

1 1
fo(p+p2+p“)dF fo (p + 2p) dF

Q(3) F) = max 1 ' el
'£U+pﬁ-ﬁdF£ (1 + 2p) dF

Each term of Q(3, F) can occur; e.g., for F(p) = p, the first is the maximum
(value 13/22), while for F(p) = p'’®, the second is the maximum (value 23/88).
The expression for Q(n, F) cannot be simplified in any essential way, which
again testifies to the complex nature of the optimal strategies in sequential
design problems.
If one chooses k1 = r, ky = k3 = --- = 0, then

EfS.] _ wmApe+ -+ p+ (0 — N

(44) EJN. 1 +wm+ o F g+ (n— ru, ’

1
where u; = f p’ dF(p). For distributions such that Y oy uy = + =, at least, a
0

reasonable approximation to Q(n, F) may be had by taking r = n — 1 and using

F) = #1+#2+"'+#n
Lo B) = e s

in place of Q(n, F). For the uniform distribution, @ and L coincide for n < 4,
but not for larger n. It is worth remarking that L shares many of the properties
of Q.

Lemma 4.8. L is nondecreasing in n, and L(n, F*) = L(n, F) = L(n, F’).

The proof is omitted.

We close by noting that if the number of trials is sufficiently large, one should
almost always commence by using X. More precisely, we see from (4.4) that as
n — «, Q(n, F) becomes at least (u,+1)/ur, and this for every r. But (ur1)/u»
is the expected value of p given r successes which will tend to the supremum of
the spectrum of F as r increases. Clearly, if ¢ is greater than the supremum of
the spectrum of F, one would never play X ; while if ¢ is less than the supremum,
for all sufficiently large n, X should be used first. Finally, for a fixed n we have
the following intuitive result:
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LemMA 4.9. Given n and F, Y should never be used if
1

[ ot — oy ar
1

fo (1 — p)"t dF

The rigorous proof may be supplied by the reader.

qg=

.

6. An applied problem. An interesting problem in industrial inspection is
closely related to the problem of Section 4. Suppose that lots of n items are
produced by a process having probability p of producing a defective where p
varies from lot to lot according to an a priori distribution, F(p). Let the loss
per defective item accepted be unity and the cost of inspection be ¢ per item
inspected (¢ < 1). Items are drawn and inspected (defective items found being
replaced by good items at no additional cost) until a sequential stopping rule
terminates inspection, at which point the remainder of the lot is accepted. A
stopping rule is desired which will minimize the expected loss.

One may proceed to attack this problem in the spirit of Section 4 and find
a completely analogous series of lemmas, culminating in the theorem that for n
items remaining and a priori distribution F, it is optimal to inspect another
item or to accept the remaining » according as ¢ is less than or greater than
Q(n, F). The same result is more immediately obtained by noting that the
problem is equivalent to finding a rule to maximize the gain if one wins ¢ for
each item not inspected, nothing for each good item inspected, and one for
each defective item inspected (and replaced). This latter problem is precisely
that treated in Section 4.
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