PROPERTIES OF SOME TWO-SAMPLE TESTS BASED ON A PARTIC-
ULAR MEASURE OF DISCREPANCY

By L. H. WEGNER
The RAN D Corporation

1. Introduction and summary. Let F and G be continuous univariate cdf’s.
For testing the hypothesis # = ( against general alternatives, E. Lehmann [4]
has proposed and found certain properties of a test based on the particular
measure of discrepancy [ (F — G) d[(F + @) /2]. In this note will be given
some additional properties of Lehmann’s test (cf. also [8]) and a closely related
test proposed by Mood [2].

2. The test statistics. Let X;,---, X,, and Yy, ---, ¥, be independent
random samples from populations with continuous edf’s F and G respectively.

Let <;n> (g )Q,,m be the number of quadruples (X;, X;, Y%, Y3), 7 <j, k <,

for which either the maximum of the X’s is less than the minimum of Y’s or
the maximum of the Y’s is less than the minimum of X’s. Then

2.1) Qmn = (;"r <§) l Z ); ’é g Xipa,

where X ;i is one if X;, X; € Y, ¥; and is zero otherwise. Lehmann [4] has
shown that Q.. is a minimum variance unbiased estimate of the functional,

22) QF, G) =3 +2f(F G)d(F+G>

Replacing F and G in (2.2) by the corresponding sample cumulative distribu-
tion functions, say S and T, yields the statistic,

2.3) D= f (S — Ty d(s—“;_T>,

which is the symmetric version of a test statistic originally proposed by Mood [2],
2.4) = [(s-mrar.

The critical region for each of the two-sample tests corresponding to the above
test statistics consists of the region in the m x n dimensional sample space
(or equivalently, the arrangements of the mX’s and nY’s) for which the test
statistic takes on its largest values. In [8] the distribution of @, when F = @
has been tabled for a selection of small sample sizes.

3. The two-sample statistics expressed in terms of ranks. In order to see
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TWO-SAMPLE TESTS 1007

more closely the similarities among the above statistics, it is enlightening to
express them in terms of ranks. Let R; be the rank of the ith ordered X and r;
the rank of the jth ordered Y in the combined ordered sample of mX’s and n¥’s.
Lehmann [4] has given the following relation between .., and these ranks,

0 G)3)am - Eo-2(5 )+ - (")

From the definition of d, (2.4), we have
. 1 n . 4 2
32) d=_2<l—u>,

N =1 \n m
and, by symmetry,

69 =g (-t rEG-t)

The above relations, after expansion and reductlon, become

2 <2m><;b> Qun = Z [(n — 1)rf — 2(m + n — 2)jr;

=1

(34) — (n —2m + 1)7-J.:| + (n 4+ 2m — 3) n(n + 1)6(2n + 1)
+ (n +m — 3m + 1)n(n+ D — mn(m — 1),
n + 1)

(35) m'n'd = Z It — 20m + n)jr] + (m + ny? 2 1)6

2m'n’D = f_; e — 2(m 4+ n)jr] + il [mR: — 2(m + n)iRi]
(3.6) ~ -

(n+ 1)@2n + 1) n (m + 1)(2m + 1)].

+(m—|—n)2|: 5 5

4. Relations among tests when m = n. From the definition of Q. it follows
that we may replace r; by R; in (3.4) if we interchange m and n. Upon adding

the resultant expression for 2(15)(;)(2“ to (3.4), setting m equal to n, and
employing the identities '

E’}+ZR =n2n + 1)

7=1

and

il 4+ Z‘l R = 3)n@n + 1)(dn + 1),
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we obtain the following relation,
2 n
4(3) Qun = (n — 1)[§n @2n + 1)(n + 1) + n’Bn + 1) — 4le(r,- + R,)].
’—
Proceeding in an analogous manner, we obtain from (3.6),
4 1 o
2n'D = n[g n2n + 1)8n + 5) — 421,7(1'; + R,-)].
=

Thus, when m = n, Qm. and D are related linearly and tests using large values
of these statistics as critical regions are identical.

b. Means and variances.
a. Means. From (2.2) the mean of @, is

1) B@w) =3 +2 [ - ara(T19).

From (2.4),

E) =E[f(s— T)sz:I=E<szdT>—2E<fSTdT>

n (n + 1)@2n + 1)'

6n?

Since E(T) = G and E(S*) = [F(1 — F) / m] + F?, the first term on the right
of (5.2) becomes, with the aid of Fubini’s theorem,

E(fssz>=f[1L“—n—:—ﬂ)+Fz]dG.

On the application of Fubini’s theorem and a special integration by parts (vide
[7], p. 102), the second term on the right of (5.2) reduces to

2E<fSTdT>=n;1—n—1/G2dF+%deG.

(5.2)

n

Thus E(d) may be written

_m—1 2 n—1 2 n — 2m
E(d)-——m——deG—l- - deF‘+ - deG

n—1+(n+1)(2n+1)
n 6n? ?

which, after substituting the identity,

[Fae+ [6ar =3+ [ & - 67 dF + @2,
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becomes

B@) = [ (- G)2d<Fj2—q)—:TlfF2dG— —szdF
(63) 4 n=2m 9n-l;1'

[Fa+

From (5.3) and the symmetry of D, we obtain for E(D),
_ _ma(F+HGY 1 2 21 2
ED) = [ G)d(-—z—) L[raw-1[ear

(54)
n — 2m m — 2n m+1, Im+1

+ [Fae+ [ear+ e
When F = @, (5.1), (5.3), and (5.4) reduce to
(5~5) E(an) = %

m-+n
(55) O [ 2]
_lm+n 1 1

(57) D) = 6[W tomt 27]

b. Variances. A method for finding the variance of Qn, for general F and G
has been given by Sundrum [8]. When F = @, he obtained

(58) *(Qm) = l.(gb)“(g)" [(m +)m4n—1) —2].

In the following there will be outlined a procedure (cf. Hoeffding [3]) for obtain-
1ng the variance of a Uy statistic as defined in Theorem 6.5 (Qmn is a particular
U statistic). This procedure also provides a result which will be needed in the
proof of a later theorem.

Set
bis@y, - T Y, o, Y))

=B, -, %, X, oy Xey vy, ¥i, Yipr,+or, V),
$oo = 0,
Cii = Blti(X1, -, Xe, Ya, o0, V)] — 6, 4,J=0,---
Let (si, -+, ), (si, - s,), (t;,---‘,), and (1, - -+ , &) be four sets of r

different integers, 1 < s;,81 = m, 1 < it < n, and let a and b be the num-
ber of integers common to the sets of s’s and #’s respectively. Then, from the
symmetry of {21, -+, %, y1, -, ¥»), it follows that

(59) E[t(Xna ""Xierh"’” Ytr)t(Xsia”' 7X-9:-’ Yt{:"' ’ Y‘;)] - 02

= {a.
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Thus, the variance of Uy can be written

-2
dz(U;v) = <T> (:'b> E[Z t(Xsn Tty X‘r’ Ytu ) Y‘r) - 0]2
-2 -2 r 7
(5.10) _ (m) (:}) S E(X,y o, KXo, Yo vy Vo)

r b=0 a=0
: t(Xb‘;y N Xs;a Ytia Tty Yt;)] - 02,
where D “” stands for summation over all subscripts such that 1 < s, < -+ <
s=mlss< - <g=mlsh<- <tL=nlsh<---<L=n
and exactly a equations s; = s; and b equations & = #; are satisfied.
From (5.9) each term in Y. “” is equal to {s. The number of terms in "

is (2)(:_'?'__;)(?)(2)(? _— l: )(:") , 50 that (5.10 becomes
= () (O BEEE 0

To find the variance of Q.. by the above method, we must first obtain the
tw'sa, b =0,1,2 and then combine them according to (5.11).

Since ¢ = 0, we have the following additional result, which will be needed
in the following section.

1y TV S (Tyl (f>_l [(ﬂ@ - (m r r)(n , r)] max (S,

= o(1) as min (m, n) — o,

-2

when max (fa) < .
From (3.5) the variance of d is

n

ady = m™n* [n2 var (Z rf) + 4(m + n)® var (121:1 jr,-)
— 4n(m + n) cov (g , i jr,)].

=
i=1

(5.13)

When F = @, the distribution of r; and the joint distribution of »; and r; (5 < k)
are easily seen to be

(5.14) fr) = (m + n>’1 (r,- - 1><m +n - 7':')’ JSsrism+j,

n j—1 n—3j 1=sj=n

h

_ _fm 4\ r;—1 rk—rj—l)

515) ﬂ"’”’””( n ) (j—l)(lc—j—l
' (m+n—mn jSrEn—(E&—5)=m+y
n—k ’ 1=j=sk=n

Equations (5.14) and (5.15) may be used to find the three terms on the right of
(5.13). After lengthy but straightforward calculations, we have

and
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n

(516) var <Z r?> - %) mn(m + n + 1)@m + 2n + 1)@m + 8n + 11),

=1

180

(02 <Z 7‘3 , 21]7‘]>

=1

(5.17) var <Z:; jr,-> = —mnim + n + 1)2n + 3)(2n + 1),

(5.18)

= so5 Mnlm + n + D(A6n* + 16mn + 14m + 31n + 13).
The following relation, which will be used in Theorem 6.1, can be obtained in a
similar manner,

(5.19) var <Z r,> = —11— mn(m 4+ n + 1).

j=1

Substituting (5.16), (5.17), and (5.18) in (5.13) and simplifying, we obtain for
the variance of d when F = @,

(m+n)(m+n+1)_|_m+n+1
45m*n? 180m3nd

6. Limiting distributions.

a. Under the null hypothesis. The following two theorems are concerned with
the limiting distribution of @m. , d, and D under the null hypothesis F = G.

TuEOREM 6.1. If F = G and m/n — ¢ > 0 as n — =, the statistics

(520) o*d) = (12m* — 3n* — 2mn).

[D — E(D)),

1 Qun — B — (Qu)], B(d)]

mn
2m + m-+n
have the same limiting distribution.

TueoreM 62 If F = G and m/n — ¢ > 0 as n — 0, the statistic
mn/(m —l— n)ld — E(d)] has the same limiting distribution as ne® — E(nw),
where «” is the von Mises statistic. (The limiting distribution of ne’ is tabled in [1];
E (nw ) =1%)

It follows from the above theorems that 1 (mn /m 4+ 0)][@nn — E(Qma)] has
the same limiting distribution as nw’® — E (nw) In Figure 1 are compared the
distribution of Qs and the limiting distribution of nw’ drawn with the appro-
priate scales.

Proor or TueOREM 6.1. From equations (3.4) and (3.5), we may write

o)) 0o - e

- —Zr 4 g — (v = 2m + 1) 3 7y + 0.

=1

(6.1)

From (5.16), (5.17), and (5.19), each of the terms on the right has variance O(n°).
! Theorem 6.2 is due to M. Rosenblatt [6].
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Thus, aside from terms which converge to zero in probability,

1 mn mn 1 (m\"(n\" ..
(62) §m [an - E(an)] = mz <2> <2> mn’[d — E(d)]
mn

mn m-+n—1
_m+n[d E(d)]+m-{-n(m— 1)(n — 1)
From (5.20), o°(d) = O(1/n%). Thus the second term on the right of (6.2) con-
verges to zero in probability.

The proof that mn / (m + n)[D — E(D)] has the same limiting distribution
as 3[mn/(m + n))[@m. — E(Qns)] is analogous and will be omitted.

b. Under the alternative hypothesis. An important subclass of the class of con-
tinuous cdf’s is the class of strictly increasing continuous cdf’s. The following
two theorems are concerned with the problem of finding the limiting distribu-
tion of @, d, and D when F and G are in this subclass and F # G.

TeEOREM 6.3. If m/n — ¢ > 0 as m — o, then the statistics

3mn / (m + )" (Qun — E@ma)l,  [mn/ (m 4 n)]'"ld — E@)], and
[mn / (m + n)""[D — E(D)]

have the same limiting distribution.
Proor. It follows from (6.1) and the inequalities,

[@ — E@)].

lerj < Z; r? < n(m + n)’ and z; r; < n(im + n),
1= Al I=
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that we may write, aside from terms which converge to zero in probability,

mn mn —2 =2 m\{n
= 5@ = 4/ 2 02 (2)(2) Qe — EQu)
1 mn
(63) = § m +' oy [an - E(an)]

| / mn 1—m—mn
+ m + n omn [an —E (an)]-

From (5.12) it follows that 6" (Qms) = o(1) as min (m, n) — o, so that the
second term on the right of (6.5) converges to zero in probability.

The proof that [mn / (m + n)]"*[D — E(D)] has the same limiting distribution
as 3[mn / (m + n)]" [Qme — E(Qux)] is analogous and will be omitted.

TaeoreM 647 If m/n = ¢ > 0 as n — o, then the statistic
mn / (m 4+ 2)]" [ Qma — E(Qmn)] has a normal limating distribution. Excluding
F and G for which either F = G or [ F dG = 0 or 1, the class for which nondegen-
eracy occurs includes all continuous F and G which are strictly increasing through-
out their range of vartation.

In the proof of Theorem (6.4) we shall need the following theorem of Leh-
mann’s [4].

Tueorem 6.5. Let X1, -+, Xn, and Y1, -+, Y, be independently dis-
tributed random samples from the distributions F and G respectively. Let
81, o+ Ty 41, **, Yr) be symmetric in the z’s alone and in the y’s alone.
Suppose that

E[t(Xl7 e, X, Yl, e, V)] = 0(F,G) = 6,
E[t(Xl) e ’Xfy Yl: ] Y,-)2] =M< =,
Let m/n = ¢ and let n be sufficiently large so that r < min (m, n). Define

-1 -1
UI” - <m> <:L> Zt(Xau "'yXa” Yﬁl’ Tty Yﬁ')’

r
where the summation is extended over all subscripts
l=ar< - <a=m, 1=8<--<B =n.
Then, as n — o, [mn / (m + n)["*(Un — 6) is asymptotically normally dis-
tributed; furthermore, if we set
U() = Eff(nX,y, -+, X, Y1, -+, ¥V,)] — 6,
Yo(yr) = E[((Xa, -+, Xp 90, Yo, -, V)] — 6,

then the limiting distribution of [mn / (m + n)]"*(Usn — 6) is nondegenerate pro-
vided
EWi(X1)] + EW5(Y1)] > 0.

? Theorem 6.4 is an amended version of a statement by E. Lehmann [4, p. 173], which
did not sufficiently restrict F and @ for nondegeneracy.
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Proor or TuroreEM (6.4). Set {(X., X;, Y&, Y1) equal to X,z [which is de-
fined following (2.1)]. Then Q... is seen to be equivalent to U, in Theorem 6.5,
where 8 = Q(F, G) and r = 2. The first statement of Theorem 6.4 follows imme-
diately. To prove the second statement, we apply the second part of Lehmann’s
theorem. We have

Yi(z) = Eli(zr, X2, Y1, Y2)] — 6

- [ w f " 26(y) dF(x) dGy) + f °° [_ 20l — 6] dF@) dG(y) — 0
=2f:(1‘F)GdG+2f:F(1—G)dG—o

=2f_Z(G—F)dG+2[:F(1—G)dG—o.

Set I(z:) = [ (G — F)dG. Then Ei(Xy)] = 0 implies that
(6.4) I(X,) = E[I(X1)]

with probability one (with respect to F).

Suppose now that the restrictions of the second statement of Theorem 6.4
hold. This implies that there exist two points 2o and zo , o < o, which are
points of increase of both F and G. With no loss in generality it may be assumed
that G(z) — F(z) = 8 > 0 for z in the interval (xo, zo). It follows that I(x;) >
I(x) so that (6.4) can not hold with probability one.

7. Consistency and unbjasedness.

a. Consistency. For the class of continuous cumulative distribution functions,
the test based on Q.. of the hypothesis F = @ against the alternatives F # G
has been shown by Lehmann [4] to be consistent at each level of significance
when min (m, n) — «.

With the aid of the theorems on limiting distributions and the fact that the
means of d and D are linear functions of [ (F — G)’ d(F + G) plus a term which
is o(1) as min (m, n) — «, it readily follows that the tests based on d and D
are consistent under the conditions of the above paragraph provided the addi-
tional restriction m/n — ¢ > 0 as n — o« is imposed.

b. Unbiasedness. That the tests based on Qms , d, and D are not unbiased tests
of the hypothesis F = @ against all continuous alternatives F # G and all
m and n is shown by the following example.

Let F; and G, be cdf’s with the probability density functions

= 0, otherwise,
and
gay) =1 1=2y=2

0, otherwise.
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In the m x n dimensional sample space let W4 be the region for which
max (z1, -+, Tw) < min (1, ---, ¥,) and let WS, be the region for which
min (z1, -+, Zm) > max (y1, -+, Y»). Then

-1
P(Waa|F = G) = PWS | F = G) =~(m:n) ’

P(Wma|F =F1,G=G)=PWE|F=F,,G=06)=@®"

Since, for fixed n and sufficiently large m, (m : n> < 2™, there exist m; and n;
such that both

P(Waa |F =F1,G = G) < PWP,, | F = @),

P(Wain |F =F1,G =) < PW®,, |F =G),

so that any test of the hypothesis F = @ having WS u,, W, , or WS UWSE,,
as a critical region will be biased against the alternative F = F;, G = G,.

Since critical regions for the tests based on Qma , d, and D are regions yielding
large values of these statistics, it can be seen by examining the maxima of these
statistics over the possible arrangements of X’s and ¥’s that for each test and
every m and n, one of Wi , W, or WEAUWS, is a possible critical region.
Thus, each of these tests is biased against the alternative F = F,, @ = G,,
whenm = my,n = ny.

Il

8. The power of the test based on Q,,, for a particular class of alternatives.
In [5], Lehmann has discussed the power of several two-sample distribution-
free tests for the particular class of alternatives G = F*(k = 2,3, --- ,). One of
the tests considered by Lehmann was the two-sided version of Wilcoxon’s rank
sum test, which we shall use here as a basis of comparison. With the aid of Leh-
mann’s technique, the exact power of the Q. test was found form = n = 4
to be 0.19 against the alternative @ = F” and 0.32 against @ = F®, which results
are identical with the corresponding results for Wilcoxon’s test. For larger m
and n, the approximate power of the Q.. test was obtained by use of the approxi-
mate distributions indicated in Section 6. Against the alternative @ = F?, the
approximate power was slightly larger than that of Wilcoxon’s test for 5 < m =
n < 40 and slightly smaller for m = n > 40. Against the alternative G = F,
the approximate power was essentially the same as that of Wilcoxon’s test for
5 = m = n < 15 and slightly smaller for m = n > 15.
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