ABSTRACTS 523

If there does not exist a finite Gy for which ¢.(G) does not become infinite,
then g,(@) becomes infinite for all @ > 0. Thus g.(G) either becomes infinite for
all @ > 0 or approaches zero for all G > 0. In the first case, sampling will term-
inate because f,(G) > B for sufficiently large » for all G > 0; and in the second
case t00, since f,(G) < A for sufficiently large » for all @ > 0.

3. Comments. It has been possible to obtain an upper bound for the limiting
value @, but not to obtain its value uniquely. David and Kruskal [3] have pro-
vided a solution to the same problem for the sequential -test.

4. Acknowledgement. I am most grateful to Dr. N. L. Johnson for his guid-
ance during research on this problem, to the referee for his comments, and to
the British Coal Utilisation Research Association for permission to publish this

paper.
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ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Washington meeting of the Institute, March 7-9, 1957)

1. Synchronization of Trajectory Images of Ballistic Missiles and the Timing
Record of the Ground Telemetry Recording System, HArry P. HarT-
KEMEIER, Stanford University, (introduced by Paul R. Rider).

In order to compute the position, velocity, and acceleration of a missile, it is necessary
to synchronize the image pattern from ballistic camera plate records and the timing record
of the ground telemetry recording system. In the past this has been done by personal
inspection. This takes too much time; consequently, a method by which the two records
may be matched by high-speed electronic computers is required to speed up the work.

The missile is equipped with two strobe lights, one on each side, which are supposed to
flash simultaneously when scheduled to do so by a programmer. Inside the missile there is
a timing generator controlled by a tape punched according to a coding pattern. When the
timing generator sends a signal for the strobe lights to flash, it also sends a signal simul-
taneously to the telemetry transmitter. This signal reaches the ground recording telemetry
system through a radio link. A method of matching these two records by using correlation
technique and an electronic computer is presented. (Received November 6, 1956.)

2. Maximum Likelihood Estimates in a Simple Queue, A. BRUCE CLARKE,
University of Michigan, (By Title).

A simple stationary queueing process is a process having a Poisson input (with parameter
A), and a negative exponential service time (with mean 1/u, g > \). Let » = the initial
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queue size, z; = the time of the ith arrival, y; = the “busy time’’ up to the ¢th departure.
The sequences {z;} and {y:} then represent the transition times of independent Poisson
processes (parameters A and u), and {», {z:}, {y:} together characterize the process. By
observing the process for a fixed ‘‘busy time’’  and using the above comment, maximum
likelihood estimates for A and x may be obtained in terms of », m = the total number of
departures, T = the time of the mth departure, and n = the total number of arrivals up
to time 7'. Under certain conditions these estimates of A and x may be approximated by
(n + »)/T and (m — »)r. (Received November 12, 1956.)

3. A Rank Order Test for Trend in Correlated Means, ArpiE Lusin, Walter
Reed Army Institute of Research, Washington, D. C.

In many experiments the major interest is not in the amount of difference caused by the
treatments but the rank-order which results. This is especially true when successive meas-
urements are made on the same subject, and the “treatments’’ are simply varying amounts
of fatigue, sleep loss, etc., i.e., some function of time. For such studies the null hypothesis
is that no trend exists and generally the only alternative hypothesis is a rank-order that
can be specified by the experimenter.

A. R. Jonckheere (“A distribution-free k-sample test against ordered alternatives,’”
Biometrika, Vol. 41 (1954)) has used Kendall’s tau to obtain a general statistic, P, for test-
ing the agreement between a hypothesized rank-order for n objects or scores and a set of
observed rankings of the » scores by m judges. From this general approach, he derives a
test for trend as a special case.

As an alternative to Jonckheere’s P, a statistic J based on Spearman’s S(d?) is examined.
It is the sum of the S(d?) values computed between the m observed rankings of the n scores
and the hypothesized rank-order of the n scores. K, the average rank order correlation
between the m rankings and the hypothesized rank-order, is a simple algebraic function
of J.

It is shown that J is slightly more sensitive than Jonckheere's P statistic for smal
values of n, but that P tends to normality faster than J. (Received November 13, 1956.)1

4. On the Stochastic Structure of Minkowski-Leontief Systems, Davip
RoOSENBLATT, American University.

A linear system z(I - A) = w is said to be of Minkowski-Leontief type if A is a finite
nonnegative square matrix of order n with no row sum exceeding unity and z, w are non-
negative row vectors. A non-null solution z of such a system is called admissible. Theorem:
Every system of Minkowski-Leontief type z(I — A) = w which exhibits at least one admissible
solution s equivalent to a unique system £(I — A) = 6, where A is a stochastic matriz de-
pending on A and w and 0 18 a null vector of dimension at most n + 1. Every admissible solu-
tion of z(I — A) = w (appropriately extended or contracted) is proportional to a convex linear
combination of the stationary stochastic vectors of A. If A is nonstochastic, w > 6, , let 4

denote the matrix w* where b= (I — A)e/, w* = \z'w, A\, = we’, and ¢ is the row

vector with all elements unity. If (I — 4)1 exists and w # 6, , there exists a single ergodic
set of indices; if w is positive the stationary vector of 4 is positive. Clearly,

£=(wd — A)N)

Ifw = 6, and (I — A) issingular, 4 is taken as where A.is the largest stochastic

A, O
0 I n—r
principal submatrix of A. Systems of the present type occur in economic input-output
analysis and generally in socio-physical models based on ‘“balanced-margin’’ tables, i.e.,
nonnegative square matrices X such that eX = e¢X’. (Received November 20, 1956.)
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5. The Joint Distribution of a Set of Sufficient Statistics for the Parameters
of a Simple Telephone Exchange Model, VAcLav Epvarp BENES, Bell
Telephone Laboratories, (By Title).

This paper considers a simple telephone exchange model which has an infinite number
of trunks and in which the traffic depends on two parameters, the calling-rate and the-
mean holding-time. It is desired to estimate these parameters by observing the model
continuously during a finite interval, and noting the calling-time and hang-up time of
each call, insofar as these times fall within the interval. It is shown that the resulting
information may, for the purpose of this estimate, be reduced without loss to four sta-
tistics. These statistics are the number of calls found at the start of observation, the num-
ber of calls arriving during observation, the number of calls leaving during observation,
and the average number of calls existing during the interval of observation. The joint
distribution of these sufficient statistics is determined (in principle) by deriving a generat-
ing function for it. From this generating function, the means, variances, covariances, and
correlation coefficients are obtained. Various estimators for the parameters of the model
are compared, and some of their distributions, means, and variances presented. (Received
November 29, 1956.)

6. On the Stochastic Structure of Minkowski-Leontief Systems, II, DaviDp
RosENBLATT, American University, (By Title).

Consider a system z(I — A) = w of Minkowski-Leontief type such that (I — A)~! exists.
Clearly, (I — A)™! exists if and only if A contains no stochastic principal submatrix. In
a static economic input-output context the element a;; is designated as the input (per
unit output) to industry or activity ¢ procured from industry j; w;, z; are respectively
final output and total output (or activity level) of the jth industry. Consider the uniquely
corresponding system #(I — A) = 0, where 4 is stochastic. The unique stationary stochastic
vector of 4 is given by (papw*(I — A)™Y, Pny). The “multiplier” p = S 2;/\ is given
by 1/pn41, where A = zn41 = we’. Given a nonsingular matrix (I — A), the following rela-
tion holds in components of an admissible solution for any w: Xj=1 (1 — r))2; — Zn+1 = 0,
where 2,41 = we’ and r; is the jth row sum in A. The latter relation is the technical pro-
duction-possibility function of the economy in an input-output sense; —Az;/Az; =
A —=r)/QA —71)), A%;/A%wy = L/(A — 1), 5 =k, 7,k =1, ...,n, are the invariant “sub-
stitution ratios’” of the system, obviously independent of w. Let  be an admissible solution
of x(I — A) = w, (I — A) singular or not, and let D(z, \) be a diagonal matrix with com-
ponents of z and X on the diagonal. Then D(z,A)4 is a “‘balanced-margin” table. Consistent
with a noted ‘‘substitution’’ result, Xj.1 Kjw; = %»41 = A, where K; = 1 for all 7 inde-
pendently of w. (Received December 17, 1956.)

7. .A Further Contribution to the Theory of Systematic Statistics, JunJsiro
Oagawa, University of North Carolina.

Up to 1945 the main interest of statistical estimation has been in the “efficient esti-
mator,” but from the point of view of practical use, it seems reasonable to inquire whether
comparable results could have been obtained by a smaller expenditure. F. Mosteller (1946)
proposed the use of systematic statistics in this connection. The author (1952) developed
a systematic theory of estimation and testing hypotheses with respect to the lacation and
scale parameter of a population whose density depends on only these two parameters.

There are many cases in which the samples are by their very nature ordered in magni-
tude, for example in a life test of electric lamps. In such cases the population probabilty
distributions are usually supposed to be exponential. Thus, at least for the exponential
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distribution, estimation and testing of a hypothesis based upon systematic statistics are
of great importance from the standpoint of practical application.

There will be presented in this paper the table of the optimum spacings of the selected
sample quantiles, corresponding best estimators, and a discussion on the testing procedure
of a statistical hypothesis on the scale parameter o of the exponential distribution f(z) =
(1/a)e==l) for z > 0. (Received January 7, 1957.)

8. On the Stochastic Structure of Minkowski-Leontief Systems, III, Davip
RosENBLATT, American University, (By Title).

Consider any system z(I — A) = w of M-L type. The following “aggregation’ problem
is of interest. Let an aggregation matriz C be an (n X r) stochastic matrix of incidence
type,1 = r < n.Let B = f(A) be a M-L matrix of order r. We consider conditions under
which £AC = £CB obtains for admissible solutions £ of a systemz(I — A) = w. The follow-
ing case is of special interest. Let a weight matriz E be an (n X n) diagonal matrix with
nonnegative entries on the principal diagonal. A consolidation of a matrix A of M-L type
is an (r X r) matrix B = B(4;C, E) = (C’EC)"'C'EAC, 1 £ r < n. “Faithful consolida-
tion’’ of a stochastic system (I — A) = 0 is characterized from the standpoint of ergodic
structure; the condition AC = CB(4; C, E) is of particular interest. A general consolida-
tion condition for M-L systems is related to the ‘‘combining-of-classes’ condition of sto-
chastic learning theory. The following is of economic interest: the existence of (I — B)!
does not in general imply the existence of (I — A)™1, and conversely. In the static input-
output model of II, the ergodic structure of A of the equivalent system (and the role of
mean recurrence time 1/(p.,)) suggest that the stationary stochastic vector § of 4 be
computed iteratively using successive powers of 4, yielding %, in lieu of matrix inversion
with or without consolidation; in most applications, lim»wA* exists. (Received January

14, 1957.)

9. The Use of Incomplete Block Designs for Asymmetrical Factorial Arrange-
ments, MARVIN ZELEN, National Bureau of Standards.

Let 4, (s = 1,2, ..., m) denote the sth factor in a m-factor factorial experiment such
that A, has m, levels. Let ¢ = (41, %2, ... , im) represent a particular experimental com-
bination of the m-factors and let the mathematical model underlying the measurements be

*m

yij=n+ 21 (ac).', + 2 21 (au)c,,-l- R (012---m)¢u,,,m + b + €5,

tea2 g

where (as);,, (@at)i,¢s --- (@12...m) ;1,. ., Tepresent the various main effects and inter-
actions, b; represents the block effect, and the ¢;; are NID (0, 02). Algorithms are given for
using the balanced incomplete and the group divisible designs for asymmetrical factorial
arrangements. Let M(s) be the square matrix (of dimension M,) M(s) = m.J — J where
J is a matrix having all elements unity, and define the direct product of p such matrices by
MQ,2,...,p)=[MQ1A) X M@2) X ... X M(p)] (p < m). Then the variance-covariance
matrix of a p-factor interaction for the G.D. case can be written as M(1, 2, ..., p) 0%/
(Euv) (¢ = 1 or 2). For the BIBD, the same expression holds with E; = E; . The correla-
tions between the different interactions are all zero and since M2(1,2, ... ,p) = M(,2, ...,
'2) II? ma, (B /TIfma] 2 (as2.. p)%,,..., followsa o?x? with IIf (m, — 1) degrees of freedom
under the hypothesis of no p-factor interaction effects. (Received January 16, 1957.)

10. An Extension of the Cramér-Rao Inequality, JouN J. Gart, Virginia Poly-
technic Institute, (By Title).

Consider a frequency function f(z | 8) where 6 = (61, 62, ... , 6,), the function being
specified when 0 is specified. The parameter 6 has a density ¢(6) independent of x. Let X =
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(#1, %2, ... , ) be a random sample from a randomly chosen population having the
gpecified frequency function. Then if ¢ = TI{; f(z:|6) and t (independent of 6) is an
estimate of 6,1 < k = s, there follows a form similar to the Cramér-Rao Inequality,
EE[(t — 6:)*| 0] = {E[E(tz | 0) — 6:]}* + E*{[0E(tx | 0)1/36:} {EE[(3lng/36:)* | 6]} . The
equality is reached if and only if ¢ is an unbiased sufficient statistic having the normal
distribution with constant variance. In this case the equality hoids regardless of the form
of g(8). (Received January 17, 1957.)

11. Multivariate Analysis of Variance, S. N. Roy, University of North Carolina.

Consider a model under which we have stochastic variates X(p X n) = [21 ... Za]p
such that z;’s (for ¢ = 1, 2, ... , n) are independent N[E(z), 2], E(X') = A(n X m) X
£(m X p), A (to be called the design matrix) is a matrix of constants given by the design
of the experiment, ¢ is a matrix of unknown parameters,rank () =r=m<n,p=n—r
and T is an unknown dispersion matrix. Under this model suppose we have a testable
hypothesis (the meaning and mathematical criterion for testability being discussed in the
paper) Ho:C(s X m)t(m X p)M(p X g) = 0 (s X ¢g), where C and M (to be called the hy-
pothesis matrices) are given such that rank (C) = s < r and rank (M) = ¢ < p. The al-
ternative is H:CtM = n (s X q) (0). The test is that at a level « we accept Ho if cmax
(S*S-!) £ c. and reject H, otherwise, where S* and S are matrices given (in the paper) in
terms of X, A, C and M, cmax(T') denotes the largest root of a matrix with real nonnegative
roots, and c. is a constant depending on «, min (s, ¢) and » — r, which we can pick up
from tables now under construction and expected to be published shortly. (Received
January 17, 1957.)

12. Confidence Bounds Associated with Multivariate Analysis of Variance,
S. N. Roy AND R. GNANADESHIKAN, University of North Carolina.

We start from the same set- up as in the previous paper. The S* and S (to be called re-
spectively the dispersion matrix ‘“‘due to the hypothesis’’ and the dispersion matrix ‘‘due
to the error’’) are the exact analogs of the variance ‘‘due to the hypothesis’ and that
“due to the error” in the customary univariate analysis of variance. Given any level a,
we can pick up a constant c. from the tables mentioned in the previous paper and make,
with a probability greater than or equal to 1 — a, the confidence interval statement:
chiZe(s8*) — Iscal’® X caix(S) S chasln'Un] S chix(s8*) + lscal “ehix(S), where U(s X s)
is & nonsingular matrix given (in the paper) in terms of A and C, and Cmax[n'Un) is zero if
and only if = 0, i.e., H, is true. With a joint probability greater than or equal to 1 — a -
we can alse make simultareous confidence interval statements including the one given
above and others exactly similar to this but in terms of S, S®* y® (fori = 1,2, ..., p)
and next in terms of S\, S6.* yGd) (for g % j =1,2,...,p), and so on, where S
and S* stand respectively for truncated matrices after cutting out the ith row and ith
column from S and S*, n¥ for » with the 7th column cut out, S¢:9, 8G.»* for 8 and S*
with the ith and jth rows and columns cut out, n:? fot n with the ith and jth columns
cut out, and so on. (Received January 17, 1957.)

13. Extension of Some Results Given by Mitra on “Statistical Analysis of
Categorical Data,” EArL DiamonD, University of North Carolina.

This is a follow-up of two previous paper ([1] “Some non-parametric generalizations
of analysis of variance and multivariate analysis” by S. N. Roy and S. K. Mitra, Bio-
metrika, December, 1956, and [2] “Contributions to the statistical analysis of categorical
data” by S. K. Mitra, North Carolina Institute of Statistics Mimeograph Series No. 142).
We start from a product of multinomial distributions of the form ¢ = IT ;[n,;! I MLnis!)
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with Zipe, = 1,4 = da .o 35 = jiga ... Ge; 00 = 1,2, ..., 1 .. =1,2,..., 153
J1 € (81)j;---5¢ (a subset of 8, depending on the subscript set jz ... j¢); j2 & (S2)ig-+sg; - .- ;
Je-1e (s¢e-1)j,and je = 1,2, ..., s¢ . Wenext consider two hypotheses HP:pi; =757 6,y ...,
0:,) subject to g’ (01, ... ,0,) =0 (m =1,2,... ,u < ) and H®:p;; = P, ...,
022) subject to ¢ (61, ... , 0:2) =0(m=1,2,...,us < t), where t, , { < total number
of cells — total number of multinomial distributions. Each hypothesis is a composite one
in which the 6s or 8”’s are the nuisance parameters and fi, ¢, fi and ¢ are known
functions. Tests are taken over from Refs. [1] and [2], and the asymptotic powers of the
tests and the conditions for asymptotic independence are derived which are extensions of

similar conditions for more special cases discussed in [2]. (Received January 17, 1957.)

14. Testing of Hypotheses on a Mixture of Variates Some of Which are Con-
tinuous and the Rest Categorical, S. N. Roy aNpD M. D. MoUSTAFA,
University of North Carolina.

We start from a &k + f-variate distribution in which & variates are continuous and £
variates are categorical. The k variates are assumed to have a conditional multivariate
normal distribution with respect to the £ categorical variates which are assumed to have
a multinomial distribution. Appropriate hypotheses are framed in this situation, analogous
to the customary hypotheses on a single multivariate normal distribution (or to those
in Refs. [1] and [2] of the previous abstract), large sample tests of such hypotheses are de-
veloped and some of their properties studied. Next, instead of assuming a single multi-
nomial distribution on the £ categorical variates, a product of multinomial distributions
is assumed and hypotheses are framed in this situation analogous to the customary ones
for several multivariate normal distributions or to those in Refs. [1] and [2], and large
sample tests of such hypotheses and some of their properties are studied. (Received Janu-
ary 17, 1957.)

15. On Statistics Independent of a Sufficient Statistic, Evan J. WiLLiaMs,
North Carolina State College.

It is shown that if, for a sample drawn from a population of values of z with distribu-
tion depending on a parameter 0, the statistic z is sufficient for 8, and g is any statistic
whose distribution is independent of 4, then g and z are independently distributed. The
method of proof is less sophisticated than that of Basu (Sankhya, Vol. 15 (1955), p. 377).

The result has application to the normal distribution: the mean of a sample is distributed
independently of any location-free statistic; and to the gamma distribution: the mean of
a sample is distributed independently of any scale-free statistic. These well-known re-
sults follow sipce the sample mean is a sufficient statistic, in the former case for the loca-
tion parameter, in the latter case for the scale parameter.

The limitations of the general result lie in the difficulty of deriving statistics independent
of parameters other than location and scale parameters.

The connexion of the theorem with estimation theory is discussed. (Received January
17, 1957.)

16. Generalized Quantal Response in Biological Assay, Joun GuRrLAND, Iowa
State College.

The quantal (all-or-none) response in biologioal assay refers to a response in which one
of two possible outcomes occurs. In a bioassay such as that of an insecticide based on
mortality of the housefly, say, there are, however,three possible outcomes, namely, alive,
moribund, dead. The present paper considers a generalized quantal response in which
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two or more outcomes are possible. Whether one uses normits (cf. probits) or logits or
other transformations, a general method of analyzing the data is developed which makes
explicit use of all the possible outcomes and hence is more efficient than the common pro-
cedure of pooling some outcomes (for example, moribund and dead) in order to make the
response all-or-none. Further, a technique analogous to that used in discriminant functions
is suggested as a method which makes more efficient use of the data than the pooling method
‘mentioned above. (Received January 21, 1957.)

17. The Variance of Zero-Crossing Intervals, J. A. McFappEnN, U. S. Naval
Ordnance Laboratory, (introduced by Gilbert Lieberman).

Two expressions are given for the variance of the intervals between successive zeros
of a random process. It is assumed that the successive intervals form a Markoff chain.
If z(t) is a random process, let y(f) = 1 when 2(¢) = 0 and y(¢) = —1 when z(f) < 0. Let
B be the expected number of zeros per second and let « be the correlation coefficient be-
tween two successive zero-crossing intervals. Then the variance is o2 = (24/8)(1 + «)/
(1 — «), or alternatively, o2 = [(1 + 2B)/8*] (1 — x)/(1 + «), where A = [§ r(r) dr and
B = f: [Q(z) — B] dr. r(7) is the autocorrelation function of the process y(f) and Q(r) dr
is the conditional probability of a zero between ¢t + = and ¢ + = + dr, given a zero at time
t. (Received January 21, 1957.)

18. A Limit Theorem and Bounds for an Optional Stopping Probability, MorrIs
SkiBINsKY, Michigan State University, (By Title).

Let S; be the standardized jth partial sum of a sequence of bounded independent, identi-
cally distributed random variables, K, a positive constant, and let

Q(m’ n, K) = Pr{maxméiSu 8; = K}-

It is shown by elementary methods that if limm_,,[(#z — K)/m!/?] = 0, then limp_, e
Q(m, n,K) =1 — ¢(K), where ¢ is the standard normal c.d.f. Certain steps in the
proof are then used to obtain simple bounds for @(m, n, K) when the sequence of random
variables is generated from Bernouli trials. (Received January 21, 1957.)

19. A Limit Theorem of Cramér and Its Generalization, Junsiro Ogawa,
University of North Carolina, (By Title).

As a generalization of Doob’s theorem, H. Cramér states the following theorem: Suppose
we have for everyv = 1,2, ... ,y, = Az, + 2z,, where z, , Y, and 2, are n-dimensional random
variables, while A i3 a matriz of order (n X n) with constant elements. Suppose further that
as v — », the n-dimensional distribution of z, tends to a certain limiting distribution, while
2, converges in probability to zero. Then y, has the limiting distribution defined by the linear
transformation y = Az, where x has the limiting distribution of the z, (H. Cramér, Mathe-
matical Methods of Statistics, Princeton, 1946, pp. 299-300). Cramér skips the proof of this
theorem. In this paper, the complete proof of this theorem will be given and two theorems
which are generalizations of this theorem and are useful in statistics will be proved. (Re-
ceived January 22, 1957.)

20. On the Mathematical Principles Underlying the Theory of the x? Test,
Junsiro Ogawa, University of North Carolina, (By Title).

The rigorous proof of the theorem that the x? statistic has the limiting chi-square dis-
tribution with degrees of freedom reduced by the number of the independent parameters
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which were estimated from the frequency data, was first given by H. Cramér in his famous
book Mathematical Methods of Statistics, Princeton (1946), but some steps of the proof
were skipped. Later on S. N. Roy and S. K. Mitra (Biometrika, Vol. 43 (1956)) and S. K.
Mitra (Thesis, University of North Carolina, 1956) reasoned along the same lines and
got theorems adjusted to various physical situations. The purposes of this paper are to
present a complete and self-contained proof of Cramér’s theorem on the one hand, and on
the other to explain how the proof of the related theorems got by S. N. Roy and S. K.
Mitra could be thrown back on that of Cramér’s theorem from the mathematical point of
view. (Received January 22, 1957.)

21. Minimization of Certain Integrals Subject to Linear Constraints, (Pre-
liminary Report), C. H. Krarr aNp I. OLkiN, Michigan State Uni-
versity.

Let F be the class of measures f such that E;qi(z) = a; ,2 =1, ... ,nand E;H(f) < .
The problem of minimizing E/H (f) over F has been treated by Shannon [Bell System Tech-
nical Journal, Vol. 27 (1948), pp. 623-656] for H(f) = log f, g(z) = «* using calculus of
variations, and by Weiss [Ann. Math. Stat., Vol. 27 (1956), pp. 851-853] for H(f) = f, arbi-
trary square integrable g¢:(z).

The following considerations apply to these cases as well as others, e.g. H(f) = fr.
An inequality of the form E/H(f) = T(f, g) for all densities g is available, where T'(g, g) =
E,H(g). T(f, g) is constant for f ¢ F if and only if g(z) = Zbsg:(z). The bound is attainable
if the constants b; can be chosen so that g £ F. These considerations extend the proofs to
not necessarily dominated families F on any measure space. (Received January 23, 1957.)

22. The Recovery of Intervariety Information, BrapLEY BucHER, Princeton
University.

Assume, in the incomplete block model, y:; = m + b; + v; + e;; , that the block effects
are independently distributed with mean 0 and variance 82, the error terms e;; are inde-
pendently distributed with mean 0 and variance o2, and that the variety effects ti, ... , &,
are fixed effects and that ¢;4,, ... , £, are independently distributed with mean 0 and
variance 2. Then in estimating any linear combination of the variety effects, say, aitx +
Gsly + ... + aits , we may make use of information among the varieties tiy1, ..., in.
Minimum variance linear unbiased estimates are obtained for such combinations for a
large class of incomplete block designs. In general, these estimates have smaller variance
than analogous estimates obtained using only inter- and intra-block recovery. For balanced
incomplete blocks the estimate with intervariety recovery is shown to be the same as
the combined intra- and inter-block estimate. Several techniques are developed which
are useful for finding estimates using intervariety recovery. The problem of estimating
+2 is discussed. Useful applications of the technique of intervariety recovery are considered.
(Received January 24, 1957.)

23. Some Uses of Quasi-Ranges II, J. T. Cau anp F. C. LEonE; Case Institute
of Technology anp C. W. Torp, Fenn College, Cleveland, Ohio.

In ““Some uses of quasi-ranges,”’ (Ann. Math. Stat., Vol. 28 (1957), No. 1), inethods are
given of using quasi-ranges to obtain confidence intervals for, and tests of hypotheses
about, some measures of dispersion of a given distribution (such as the interquantile
distance and the standard deviation). In this paper, further research is done on the selec-
tion of quasi-ranges for making inferences about the standard deviations of the normal,
rectangular, and exponential distributions. The methods are also extended to the co-
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efficient of variation, the difference and ratio of interquantile distances and standard
deviations of two given distributions, etc. Tables are given to facilitate applications.
Received January 24, 1957.)

24. On Selecting a Subset Which Contains All Populations Better Than a
Standard, SHANTI S. GurTA AND MILTON SOBEL, Bell Telephone Labora-
tories.

Populations »;(z = 0, 1, ... , p) are given with a common Koopman-Darmois distribu-
tion of known form differing only in the value of the unknown parameter r;(s = 1,2, ... , p);
cases of known and unknown (associated with the standard =) are treated separately.
Location and scale parameter problems are both treated. In some problems ; is defined
as better than m if 7; > 7o ; in others if r; < 7o . A procedure is given in each case for
selecting a small subset so that, for any true configuration, the probability of including
all r; equal to or better than =, is at least P*, P* < 1 being preassigned. For the location
parameter, with 7, unknown, the procedure is to retain all =; with @; = X2/ w(z:;) =
iy — d/(n;)1/2; here @; is sufficient for 7;(¢ = 0, 1, ... , p). For scale parameter problems,
with smaller r; more preferable, the procedure retains all x; with 3% w(zi;) < (1 + d)
%1 w(zo;). In several problems the value of d is computed and tables are given for dif-
ferent P* and p-values; in others transformations are used to ‘“‘normalize’’ the problem.
The normal and chi-square distributions are used as applications. Problems involving
binomial and Poisson distributions are treated separately with and without normalizing
transformations. (Received January 24, 1957.)

25. On the Relation Between Loss Functions and Significance Levels, (Pre-
liminary Report), H. RoBERT VAN DER VAART, North Carolina State
College and Leiden University.

Consider a one-parameter family {P,} of probability distributions. Be it asked to test
Hy:0 = 6o, against H,:0 > 6, . Define a loss function L = [, if H, is rejected when true,
L = l, if H, is rejected when true, L = 0 otherwise. Suppose a family {w:} of subsets of
the sample space is given, Ps(w;) being a monotonous increasing function of 6 for each w; .
Then selecting a critical region w, such that Ps(w,) has some fixed value « is a classical
procedure, known to be minimax relatively to L provided « = 1,/(ly 4+ 4) (Sverdrup, 1953;
Ruist, 1954). However most statisticians, while fixing Ps(w.) = « for 6 = 6, , really want(ed)
to reject H, only if 6 differs materially from 6, , say if 8 > 6, > 6, (cf. also Hodges and
Lehmann, 1954), i.e. they test(ed) Hq:0 < 6, , against Hi:0 > 6, (6, acting as an idealiza-
tion of H;). Now the critical region w,” which is minimax in the situation described by
adding a prime to each H in the definition of L has two properties: (i) Pgy(wy) < a =
UL/ + 1), depending on 6, , (ii) Pg,(w,’) is smaller with more powerful test families {w,}.
Both effects (subsisting with loss functions allowing for indifference zones) indicate that
fixing Ps(w,) upon a constant level for such ‘‘idealized null hypotheses’’ as § = 6, may
be a questionable procedure. (Received January 28, 1957.)

26. A Note on Fluctuations of Telephone Traffic, VAcLaAv Epvarp BENES,
Bell Telephone Laboratories, (By Title).

Let N(t) be defined as the number of calls in progress in a simple telephone exchange
model characterized by unlimited call capacity, a general probability density of holding-
time, and randomly arriving calls. A formula, due to Riordan, for the generating function
of the transition probabilities of N (¢) is proved. From the generating function, expressions
for the covariance function of N(¢) and for the spectral density of N(¢) are determined.
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It is noted that the distributions of N () are completely specified by the covariance func-
tion, if N (¢) is defined as above. (Received February 4, 1957.)

27. Randomization Procedures for the Estimation of Cross-Spectral Density
Functions, A. E. GArraTT, Virginia Polytechnic Institute, (By Title).

The cross-spectral density function may be estimated by
‘I):u(wh) = zs-l{z(tu)y(tu + kuAt)Gl(ku) + 'iX(tu)y(tu + muAt)Gz(mu)}

where the k., are independently distributed according to p:(k), ¥ = —r, ... , r; where the
my are similarly distributed according to p2(m) and are independent of the k.; and where
Gi(k,) and Gz2(m,) are arbitrary weight functions.

It is shown that the expectation of the estimator depends on the products pi(k)Gi(k)
and p:(m)Gsy(m), whereas the variance of the estimator depends specifically on pi(k) and
p2(m). Various specifications of the products pi(k)Gi(k) and p:(m)G2(m) and of the proba-
bility distributions p.(%) and p:(m) are considered which provide estimators with certain
optimum properties. (Received February 8, 1957.)

28. Fréchet Differentiable Functional Estimates, GoPINATH KALLIANPUR,
Michigan State University, (introduced by Morris Skibinsky).

Suppose f5(x) is a probability density over the finite range (a, b) which is independent of
the unknown @ to be estimated. Let ¢,(x) denote an empirical density function (defined in
the paper) of a sample of size n from the given population. Let G be a class of functionals
over the Banach space L, satisfying the following conditions: (i) G possesses Fréchet differ-
entials of the first two orders at the ‘‘true point” f5 . If gi[fo ; z] and g.[fs ; = , y] are the
Fréchet derivatives of the first and second order at f5 , (ii) ¢:1[fs ; =] is a continuous function
.of z which is not zero over a set of positive measure, (iii) | g2[fs ; z ,y] | £ A < =, 4 being
independent of x and y . (iv) G[fs(x)] = 8 (“Fisher consistency”). Then assuming regularity
conditions which validate differentiation with respect to 6, etc., and assuming
Ey(g:lfs ; x]) = 0 without loss of generality, it is shown that \/n{G[nb,.] — 6} is asymptotically
normally distributed with zero mean and asymptotic variance Es(gilfs ; z]) which satisfies
TFisher’s inequality Eo(gilfs ; z]) = {Eel(a log f6)/06]2} ! . An earlier paper by C. R. Rao and
‘the author (Sankhya, 1955) discusses similar problems for functionals of the empirical c.d.f.
(Work done under ONR project at Columbia University.) (Received February 14, 1957.)

29. The Efficiency of Nonparametric Tests, GorTrFrIED E. NokeTHER, Boston
University.

Given two tests of the same hypothesis and the same significance level. If for the same
power with respect to the same alternative one requires a sample of size n, and the other a
sample of size n, , the relative efficiency of the second test with respect to the first test is
given by the ratio n:1/n: . The paper surveys existing results on the relative efficiency of
important nonparametric tests with respect to corresponding parametric as well as other

' nonparametric test procedures In particular, the following problems are considered:
one-sample and paired comparison tests, two-sample tests, analysis of variance tests, tests
of independence and regression, goodness of fit tests. As a general conclusion, it can be said
that the employment of the more efficient nonparametric methods instead of the customary
parametric methods rarely involves an appreciable loss of information, but may lead to a
considerable gain. (Received March 1, 1957.)
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30. On a Problem in Abelian Groups and the Construction of Fractionally
Replicated Designs, R. C. Bosg, University of North Carolina axp R. C.
BurroN, National Bureau of Standards.

Consider an Abelian group of order s®, generated by n letters A1, 4z, ..., 4., with
the relations 4] = A3 = ... = A% = I, where I is the identity and s is a prime. If G =
A514%2 ... A% is any element, of the group, then the number of non-zero exponents z; may
be called the length of G. Given an integer r < n, the problem is to find a subgroup of order
s7, generated by r independent elements G; = A7*143‘% ... A%¢* such that the minimum
length of the elements in the subgroup (except the length of the unit element) is greater
than or equal to k. Consider the finite projective space PG(r — 1, s). To any point z = (21,
Z2, ..., x,) of this space, assign a non-negative integer m, which may be considered the
measure of z, in such a way that the total measure for the space is n. To a point of measure
m associate m different letters chosen out of 4, , 4s, ... , An , each of these letters being
assigned to one and only one point. Let G; = A7914%°2 ... A7 where z; is the 7th coordi-
nate of the point to which A4; is associated. It is proved that the length of the element
GY'G%? ... G} is the measure of the set of points not lying on the linear space Mz + Nez2 +
... 4 Nz, = 0. For example let n = 10, r = 4, s = 3. We can find exactly 10 points on an
unruled quadric in PG(3, 3). If we take the corresponding subgroup as the fundamental
identity for generating a 34 fraction in a factorial design with 10 factors, then all the aliases
of a main effect will have five or more factors, and all the aliases of two factor interaction
will have four or more factors. (Received January 21, 1957.)
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NEWS AND NOTICES

Readers are invited to submit to the Secretary of the Institute news items of interest

Personal Items

Professor Felix Bernstein, the founder and director Emeritus of the Institute
of Mathematical Statistics, University of Goettingen, Germany, died December
3, 1956 in Zuerich, Switzerland. Professor Bernstein was also a member of the
International Statistics Institute, a fellow of the Royal Statistics Society, a
fellow of the AAAS, and was professor of biometrics, New York University from
1936-1945. In 1950 he was American Fulbright professor at the Institute of
Statistics, Rome, Italy.

Dr. Robert M. Blumenthal has been appointed to an instructorship at the
University of Washington.

Glenn L. Burrows has been appointed Staff Statistician at the Knolls Atomic
Power Laboratory, Schenectady, New York.

Victor Chew resigned on February 1, 1957 from the position of Assistant Pro-
fessor of Statistics, University of Florida, to become Asst. Statistician at Insti-
tute of Statistics at Raleigh, North Carolina, and do work towards a Ph.D. in
experimental statistics.

Professor Kai Lai Chung, on leave from Syracuse University, is a Visiting
Professor at the University of Chicago during 1956-57.

George E. Ferris is now with the Statistics Department of General Foods’
Corporation in Hoboken, New Jersey.



