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1. Introduction. Suppose X, -+, X, and Xy, ---, Xy are two inde-
pendent samples from two possibly different populations, and R;, - -- , R,, are
the ranks of the first m observations in the combined sample and Ry, - -+ , Ry
the ranks of the remaining observations. In the first part of the paper, various
moment generating functions connected with these ranks are derived. Of par-
ticular interest may be the moment generating function of the Wilcoxon statistic.
The asymptotic distribution of a finite number of ranks is derived as N — .
The remainder of the paper studies certain aspects of the distribution theory
of rank order statistics of the form Y, fx(R:/N). The Wilcoxon statistic and
the Hoeffding c;-statistic are special cases of such a statistic. Many previous
studies have been devoted to showing its asymptotic normality. The main
purpose of the last half of this paper is to show that for certain combinations
of sample sizes m, n, and parent populations, the limiting distribution is non-
normal as m — «©,n — «, and m/N — 0.

2. Generating functions for ranks. Throughout this paper we suppose that
X1,y Xm, Xm41,°**y Xmin are N = m + n independent random vari-
ables, the first m identically distributed, each with c.d.f. F; and the last » identi-
cally distributed, each with c.d.f. F,. We suppose these c.d.f.’s are continuous.
By the random variable R;, the rank of X;, we mean the number of X s less
than or equal to X; . The main object of thissection is to write an expression for
a generating function for ranks, and the following notation is intended to be
useful toward that end. Let up = — ©, u,4; = «, and

U < Uy < < Up < Upyr .
Then we denote
G = Gijnluy, ujp) = Fi(ujp) — Fi(u;) (6=1,2;7=0,---,r).
Let 41,42, -+, %, be a permutation of the r = p + ¢(p < m, ¢ < n) integers
L2, ,p,m+1,---,m+ g and let ¢, , -+, &, be defined by
_ 1 ifdisoneofl, .-, p,
e, = {2 if iisoneof m + 1,--- , m + g,

vs.'ith similar definitions for e, , --- , e;, . If dy < dp < --- < d, is a set of posi-
tive integers, they uniquely determine a set of non-negative integers w,
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Wz, -+, wr such that
d1 = w + 1,
(1) d: = w + we + 2,

dr=w+ w4+ -+ w+r.

Conversely, (1) determines for non-negative integers w , - - - , w, a corresponding
Setdl < ce <dr.
We first want to evaluate
P{Ril = dl, ,Ri, = d,-; d1 < .- <df é N}
for positive integers d; . By an elementary computation we can write this prob-
ability as

> (m —p)! (n — ¢!

811"'87+1!t1!"'tr.+l!

@
[ GGGl Gl AR Gn) - A ).
up< e <up

where, to facilitate printing, e;, is written as e; when it occurs as a subscript
etc., and where D is summation over all non-negative integers s, , ¢; such that

st -t Hpu=m-—p,
b+ -+t =n—4g
s+ b= w,

32+t2=w2,

s+t = w,,
the w; being determined by the d; as in (1). Next we recognize that (2) equals
the coefficients of T%! --- T%r in
f (Ti,Gu + -+ Ti,Gr,r + Gr1.:)™"
(3) < e <ur
'(Ts', Gun+ -+ + Tl, G2,r + G2,r+l)”“q dFe“(ul) fe dF',‘.,(u,).

Since we can write

T, \" (T:\" Ti,_ \"™" (o \a 1
rarz = () (30) o (52) T @0t
: T:,/ \Ti T, (o) Ty -+~ T,

this suggests that we make the relabelling
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4) S =y, e, St =0, Ti =0, |

or

(5) T, = 0i--- 05,
T,', = 0,‘, . )
Substituting from (5) into (3) and denoting the resulting function of 6, , -- - , 6,

by ¢(@1, « -, i), we have
EP(Rc': =di, - ,Ri =d)o% ... % = 0:,0% - 0L,0(, -+, 1),

where Y is summation over all integers d; such that 1 < dy < d < -0 <
d» = N. We can now state the following.
TuEOREM 1. The generating function of Ry, -+ , Rp, Rmy1, +++ , Rmyq €quals

6) 2L P(Ri=di, R = )08 - 67 = 3/ 0,05 - Oi0(s1, -+ ,4),
where Y, is over all possible integers dy , - - - , d between 1 and N (no two equals

to each other) and D' is over all permutations i, y v+, U of the integers 1, - - - | p,

m-+1, -, m+q.
Remark. Equality among any two d,’s is equivalent to tied ranks which is
excluded with probability one by the assumption of continuity of F; , F, .

3. Several special cases. In this section we look at three special cases. They
will be referred to again later.
A. The generating function for a single rank. To find the generating function
for a single rank, say R, to be specific, set
p=1 qg =0, r=1 0,=20
in (6). We then obtain that

Eo® = ¢ [ 6Gy + Gl2)m—l (0G2 + Gz)" dF1(u)

@ -
=0 [ (0= DF@ + 1 (0 - D i) + 1) aFia).

B. The generating function for Ry , R, , - - - , R, . For this case we set

p=r=m ¢=0,
_in (6) and obtain
Eo¥19%2 ... gEm
=T 0% [ 0y e 0,00, — 1) Falu)
1< <uUm

+ oo 4 (0, — 1) Foum) + 11" dF1(w) - - - dF1(um),

where ) is over all permutations 41, %, - -+, 4m0f 1,2, - -+ , m.
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C. The Wilcoxon statistic. This statistic is R, + - -+ 4+ R. . In case B ahove,
set 6, = 6, = -+ = 0,, = 6 and we find that

BORttBn g g2 f [0"'-1(0 — 1) Fouy)

U< e <up

+ <o 4 (0 = 1) Foum) + 11" dF1(w1) - -+ dF1(tm).

4. Limiting distributions involving a fixed number of ranks.
A. A single rank. From (7) we have that

Eemcm = e{OIN [” ((es'OIN _ 1) F1(u) + l)m—l ((et'OIN _ 1) Fz(u) '|" 1)” dFl(u).

Suppose m — «, n — o, m/N — p. Since

("™ — DFu) + 1
= IFi@) + (1 — Fiw) + 21 — Fiw)F(u) cos (6/N)| < 1,
and since, as N — «,
| ("™ — DF;(u) + 1)" — exp [i6F (w)] i=12

we can apply the Lebesgue bounded convergence theorem to conclude that
®  Bexp @R/N) > [ _exp l0(eFiw) + (1 — p) Fi)] dFi()

as N — . Hence R,/N is asymptotically distributed as a random variable
pFi(X) + (1 — p)Fx(X),

where X has ¢.d.f. Fi(X).

REMARKS. (a) Notice that the extremes, p = 0 and p = 1 are included in this
result.

(b) If we do the above computation for R;/N, its limiting characteristic
function is given by the right side of (8) forj = 1, - - - , m, and by the right side
of (8) with dF, replaced by dF.forj =m +1,:---,m + n.

(¢) A similar analysis shows that R; /N, ---, R;/N are asymptotically
independent as N — o if j; < jo» < --+ < ji are fixed indices which do not

depend on N.
. B. Ry, ---,Rn.Wehold m fixed and let n — «. Then by the above remarks,

B exp GORY/N + - + 0 Ra/N)] T [ oxp gy o)

as n — o, Thus, B)/N, :--, Ra/N are asymptotically independent and each
is distributed as a random variable F,(X), where X has c.d.f. F; . Let us denote
the limiting c.d.f. of R;/N by S(¢). That is, there is a ¢.d.f. S, such that at any
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continuity point.¢ of S,

9) P(R,/N = t) — 8(2),

as N — o, for fixed m. Notice that in case F, has an inverse F;', then
8(t) = Fu(F7'(®)).

6. Limiting distributions of S = 2 %, fx(R:y/N).
In this section we study the asymptotic distribution of rank order statistics
of the form

(10) Sw = 2 fu(Bi/N),
where f¥(¢/N) is a real number defined for 7 = 1, ---, N. We give below a

short discussion on why Sy is of interest and on some of the known results
regarding its asymptotic distribution.
For convenience, suppose that

fv(1/N) £ fy(2/N) £ --- = fx(N/N).

Let Hy(t), (00 < t < =) be the c.d.f. of the N numbers fx(i/N). That is, Hy(f) =
proportion of fx(i/N) less than ¢. Perhaps the most notable example of a statistic
of the form (10) is the Wilcoxon statistic, in which case fv(t) = ¢, (0 =t = 1),
for all N. In [3] it was shown that in case F,, F, depend on a single parameter
0 and F; = F, when 0 = 0, then often a test of Ho:0 = 0 against H:6 > 0
based on (10) for suitably chosen fx is a locally most powerful rank order test
(local in the sense that 6 is close to zero). Studies relevant to the asymptotic
normality® of (10) can be found in [1], [2], [3], [4], [6], [8]. In particular, it may
be worth while to mention some specific conditions which insure the asymptotic
normality of S, . In each case we assume that m/N —pas N — 0 and 0 < p < 1.

(1) Fy = Fy. fx(i/N) = EZ}, for some positive integer k, where Zy; < --- <
Zyy are the ordered values of N independent identically distributed random
variables [1].

(2) F;, = F,. The assumption preceding Theorem 2 below holds and the
c.d.f. H has its first two moments [3].

(8) Fi# Foor Fy = F,. fx(t) = f(t) = a polynomial in {, which does not
depend on N [3].

We shall now construct the examples referred to in the introduction. The
main tools are Theorems 2 and 3 which follow. In addition to the basic assump-
. tions made at the beginning of Section 2, we assume also through the remainder
of the paper that there is a c.d.f. H(¢) such that at every continuity point of

2 Whenever we refer to the asymptotic distribution we mean a limiting distribution of
(Sy — an)/by, as m — o, n — « for a proper choice of {ax}, {bn}. It may be that m
depends on n.



RANK ORDER STATISTICS 429

H(t),
Hy(t) — H(1), as N — «.
THEOREM 2. Let &y, « - - , L be such that they are continuity points of H(t) and
such that H(t,), - - - , H(t.) are contimiuity points of S(u). Then
P{fu(Ry/N) < 1, -+, fu(Bu/N) < tu} — SH(®)) -+ S(H(tw))
as N — «, provided m 1s fixed.
Proor. We can write
P{fx(R:/N) < t1, -+, fn(Bu/N) < tm}
= P{R)/N = Hx(t), -++ , Bu/N = Hx(tn)}.
The result follows from (9) and the remarks preceding it.
CoROLLARY. Let o(u) be the characteristic function of a random variable with
cdf. R(t) = S(H(t)). Then
E exp i(ufw(By/N) + -+ + unfn(Bu/N)) = o(u1) - - - ¢(tm)

as N — o, m fized.
Lemma 1. Let Xy, X190, ¢+ ; Xu, Xp, -+, be two infinite sequences of
random variables, and let the random variable

tmn = tm,n(Xlly s ’le;XZI, ey in)

be a function of the m + n random variables in parentheses. Let omn(u) =

E exp (tutm,»). Suppose
(a) There is a characteristic function ¢ such that for every positive integer m

and every real u,
¢m.n(u) g [¢(u)]m
as n — «© and m 18 fized.

(b) There are norming constants @ , b and a characteristic function ¥, such
that for every real u

(11) exp (— @nt/bm)lo(w/bm)]™ — ¥(u)

as m — . Then there is a sequence of pairs of positive integers (1, n(1)), (2, n(2)),
<+« (m, n(m)), - - - such that

(12) €Xp (_iamu/bm)[‘Pm.n(u/bm)] - ‘I’(u)

asm — o, n— o, provided n = n(m).

" The proof is elementary and we omit it. We point out that (12) says that the
distribution of (tm. — @m)/bm converges to that distribution whose character-
istic function is ¥.

LemMma 2. Let R(t) = S(H(t)) be as defined above. Suppose 0 < Faf) < 1
if and only if 0 < Fy(t) < 1. Suppose also that ¢ = F 3(u), the inverse of Fa(t),
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is defined for all 0 < u < 1. Then

(a) if F, = F., R(t) = H(¢),

(b) if Fy = H, R(t) = F\(t).

Proor. The proof follows from the fact that S(u) = Fy(F 3(u)).

TuroREM 3. Suppose that if Y1, Y, , - -+ is an infinite sequence of independent
identically distributed random variables, each with c.df. R(t) = S(H(t)), then
then there are norming constants {an}, {bn}, such that the c.d.f. of (3.7 Yi — an)/bm
converges to a c.d.f. L(t), as m — . Then there is a sequence (1, n(1)), ---,
(m, n(m)), - - -, such that the c.d.f. of

(13) ng(R.‘/N) = Qm
bm

converges to L(t) asm —. o, n — o, provided that n = n(m).

PRroOF. Let tmn = D o fx(Ri/N). This statistic satisfies Condition (a) of
Lemma, 1 by the corollary to Theorem 2. (Let 4;.= - -+ = u, = u in that corol-
lary.) Condition (b) holds by assumption and this completes the proof.

ReMARKS. (a) An unsatisfactory feature of this result is that it tells nothing
about the relative orders of m and n. It is clear that we can find sequences
{m:}, {n.}, such that if m = m;, n = n;, then the asymptotic distribution of
the proposition holds and

(14) lim; m./(m; + n;) = 0.

Though our methods here are not sensitive enough to yield this information,
the sense of the derivation is such to make reasonable the conjecture that this
asymptotic distribution holds for all sample size sequences for which (14) holds.

(b) By Lemma 2, if F; = H then R(t) = Fi(t). By the proper choice of F; we
can determine the limiting distribution L to be any stable distribution. For
example, suppose (10) is the Hoeffding ¢;-statistic [7]. That is, fv(¢/N) = EZy;,
where Zx; < - -+ =< Zyn are the ordered values of N independent N (0, 1) random
variables. According to [5], H is the unit normal c.d.f. Now suppose that the
alternative to the usual null hypothesis that F; = F, is that F, is the unit normal
c.d.f. and that F, is the Cauchy c.d.f., centered at 6. Then there are sequences
{m, n(m)} such that [ D 71 fs(Ri/N) — m8] / m has asymptotically the Cauchy
distribution centered at zero. This is so because Lemma 2 (Case (a)) insures
that R is the Cauchy c.d.f. and because an average of independent and identi-
cally distributed Cauchy variables is distributed like any one of its components.

(¢) In case H(t) concentrates all its mass on a bounded interval, then so does
R(t) and excluding the one point limiting distribution, the limiting distribution
of this theorem must be normal. This will happen if f4(£)(0 = ¢ < 1) is a poly-
nomial in ¢ which does not depend on N. This is not surprising since for this case
[3] shows that if limy.. m/N = p exists, then Sy is asymptotically normal for
all 0 < p < 1. As a matter of fact, these results would seem to imply that one
should be able to include the extreme cases p = 0 and p = 1. Similarly, if F; = F,
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and H has its first two moments, then Sy is asymptotically normal. This is also
not surprising since for this case [2] shows asymptotic normality for 0 < p < 1.

(d) We can construct further examples of non-normal limiting distributions
by supposing F; = F; and by choosing H properly, since by Lemma 2(b), B = H.
This is presumably of lesser interest than the construction given in Remark (b)
above.
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