STATISTICAL PROPERTIES OF INVERSE GAUSSIAN
DISTRIBUTIONS. II.

By M. C. K. TWEEDIE
Virginia Polytechnic Institute

0. Summary. Given a fixed number n of observations on a variate z which
has the Inverse Gaussian probability density function

2 x - a—
exp{-—%%-i-q&—%}/‘/ﬁx-—s, 0<z< w,

for which E(x) = \/¢ = u, it is shown how to find functions of the sample
mean m whose expectations can be expressed suitably in terms of the param-
eter ¢ (or ). In particular, it is shown that the conditional expectation of any
unbiased estimator %, of the rth cumulant «, is

E(, |m) = 2m@n?)""" f (w — 1) qu/(r — 2)1
1

where ¢ = An/m. This expectation may be evaluated either by series given in
the paper or by using published tables of numerical values of certain functions
to which it can be related. The conditional variance of the usual mean square
estimator s° of «, is also found. These results give an asymptotic series for the
conditional variance of a generalization x; = (n — 1)s’/E(s’ | m) of a statistic
discussed by Cochran. Exact formulae for the expectation of the statistic s°/m’
and its mean square error as an estimator of A~ are given or described. This
statistic is a consistent estimator of A" and has asymptotically an efficiency of

¢/(@ + 3).

1. Introduction. An earlier paper [1], which will be called “Paper I,” was
mainly devoted to the characteristics of an Inverse Gaussian variate and its
reciprocal and to the maximum likelihood estimation of the parameters. The
work reported in that paper was started some considerable number of years
ago because of some unusual features of some experimental data which had
been obtained in the physics research laboratories of the University of Read-
ing, England. At a casual examination these data showed a strong tendency
for the dispersions to increase when samples were considered with increasing
means. This tendency was confirmed by calculating arithmetic means and the
sums of the squared deviations from the means for a large number of samples,
plotting the two against one another and fitting regression curves, using some
rather arbitrary assumptions about weighting. A comparable technique was
used by Fisher, Thornton, and Mackenzie [2] in analysing some bacterial counts.
Our case led to the question of the effect of Brownian motion in the experiments,
and to some unsolved problems in theoretical statistics. Although the values
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of the parameters in the Reading data were such as to make theoretically pre-
cise solutions to these problems unnecessary, some exact and asymptotic re-
sults have recently been obtained on the conditional distributions of certain
statistics at fixed values of the sample mean, and on the overall distributions
of some statistics which can be based on them, on the assumption that the
random variation was of the Inverse Gaussian nature which would be caused
by Brownian motion. These results are of some theoretical interest even if the
physical origin of the basic Inverse Gaussian family of distributions is ignored.
It may also be added that in the originating physical experiments there were
some relatively minor disturbing factors [3] which made the Brownian motion
theory an incomplete statistical model.

2. Some general formulae. In this paper the standard form adopted for the
probability density function of an Inverse Gaussian variate = will be

) flz; 6, 0) =exp{ ¢’“+¢_2>;}/‘/%’

with 0 < 2 < o (cf. (1d) of Paper I). The population mean of z is u = o/
The integral over (0, «) of (1), with complex values for ¢ and 1, is equal to
unity if the real parts of ¢°/A and \ are positive. The distribution (1) will rarely
appear explicitly; for we shall be mainly concerned with the sample mean and
conditional distributions referred to fixed values of the sample mean.

As has previously been shown [4], a Laplacian form for a probability density
function facilitates the derivation of the regression mean, against the sample
mean, of any statistic which is algebraically independent of the population
mean u but whose overall expectation is a suitable known function of u. The
Inverse Gaussian family is of this form and this property has already been used
in Paper I. We now proceed to give some general formulae which will be used
subsequently to derive some further statistical results.

We shall use m to stand for the arithmetic mean of a fixed number 7 of in-
dependent observations on (1). As was shown in Paper I, the distribution of m
is of the same form as (1), with ¢ replaced by ¢n. In the problems considered
in this paper, many of the mathematical operations are most conveniently ex-
pressed in terms of the variables defined by

(2) g = \n/m, = ¢n.
The probability density function of ¢ i
(3) exp (=300 + 0 — 39)/\/2mg = gf(g; 0, 1).

This is of the same form as the density function of y, the reciprocal of the In-
verse Gaussian variate x, as given in (30) in Paper I, with A = 1 and § = 1/p.

The moments of g are directly obtainable from (12) and (33) of Paper I. In
particular, Var (g) = 6 4+ 2 (cf. (35) of that paper). For convenience of refer-
ence, we give
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0E(g™) = 1
0 E(g™") = E(g) = 6+ 1
0°E(g®) = E@) =6 +30+ 3
0'E(g™) = E(g") = 6° + 66" + 156 + 15
CE(g®) = E(g") = 6' + 106° + 456" 4 1056 + 105
0"E(g™%) = E(@g°) = 6° + 156" + 1056° 4 4206° + 9450 + 945
6°E(g"") = E(¢%) = 6° + 216° + 2106* + 12606° + 47256
+ 103956 + 10395

Bysimple algebraic operations on these results one can easily find polynomials
in ¢ whose expectations are the positive integral powers of 6 from the first to
the sixth.

Under fairly general conditions on the arbitrary functions h(u) and I(g)
which appear in the following equation, it is true that

(5) E{l(g)ehJ j;w h(u)e*™” du | 0} = flw e"uTh(w) E{1(Gu ™) | 6u} du,

4)

where @ is a random variable with Gf(G; Ou, 1) as its probability density function.
It is both necessary and sufficient that the integrals and expectations in (5)
exist for all the required values of the variables on which they depend. A proof
may be established by expressing the expectation on the left as an integral and
reversing the order of the integrations with respect to ¢ and wu.

To develop the first application of (5), take I(g) = g ". Then, since

E{G™W | ou} = 67,
therefore

6) E’{g_le%” j h(w)e " dulo} =0 e"hlv + 1) dv.
1 0

From the effective uniqueness of the inverse of the Laplace transform, the
variate whose overall expectation is taken on the left of (6) must be equal to
the conditional expectation, with a fixed value of g or m, of a variate whose
overall expectation can be equated to the expression on the right of (6). The
problem of finding the conditional expectation, or regression function, thus
becomes the relatively simple one of expressing the overall expectation in terms
of 6 and then inverting the Laplace transform of A(v + 1) which appears on
the right of (6). In this procedure for inversion it is permissible to take 8 to be
complex, if necessary, so long as its real part is positive.

If T is some unbiased estimator of a function T(6) of 6 of known form, it
therefore follows that the conditional expectation of this estimator is

B(T|g) = ¢ [ hae™ du = g7 [ kG + D du
1 0
@)

0

_ raZr
=912 g)

= rl ag™

~

IS

9T (9)].
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However, this symbolic result (7) is not always the most convenient one to use,
as it sometimes leads to infinite series which can be avoided by introducing
functions for which tables of numerical values have been published. When

(8) T®) = Co°

C and s being independent of §, the inversion of the transform gives, in an ob-
vious notation,

9 - ENC6) = E(T|g) = Cgle® ‘/l-w (w — 1% qu/(s — 2)!

(10) = Cg—’} (8+l)e§0Hha_2(gl/2),

where Hh, 5(*) represents the Hermite polynomial function as given by Jeffreys
and Jeffreys ([5], 23.081, who give also convergent and asymptotic series ex-
pansions of it. When s is an integer greater than 2, these expansions of the
Hermite polynomials are infinite series. However, the right-hand side of (9) can
be expressed in closed form in terms of more extensively tabulated functions by
integrating it by parts. A convenient general formula, to avoid some rather
repetitious work if the requisite Hermite polynomials are not known in this
form, is

[ 56 du = @~ 0P oo [ ™ du

+ bP(1 — bDP) ™ (u) | ueae "2

Here a and b are positive constants, f(«) is a polynomial function of u, P is an
operator with the general property typified by PF(u) = [F(u) — F(0)]/u, F(u)
being a polynomial in u, and D is the operator of differentiation with respect
to w. The compound symbol (1 — bDP)™" is an abbreviation for the series 1 +
bDP(1 + bDP(1 + bDP(1 + ---))), which = 1 4 bDP 4+ b’DPDP +
b’'DPDPDP + ---.

In (9) the general formula (11) would take f(u) = (u — 1), a = 1, b =
g~". As an example, suppose that T(§) = 6°°. Then we shall have

(11)

fw) =o' — 4’ 4+ 60 — 4u+ 1, which = latu=0
Pfu) = v’ — 4’ 4 6u — 4 , which = —latu =1
DPf(u) = 3u’ — 8u + 6 , which =  6atu =0
PDPf(u) = 3u — 8 , Which = —5atu =1
DPDPf(u) = 3 ,which = 3atu=0
Thus
12) E;N 6% = gl flw (w — 1% qu/a!

=g QA+ 69"+ 3¢ — g — 5g7%}/24,
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where
(13) I=¢" j; e Gy = ¢4/ 2r/g / e dv/A/2r,
vy

for which Laplace found a continued fraction expansion (cf. [6], p. 263; [7], p.
v; (8], Eq. (92.11)). It is of interest that the expression within the braces in
(12) is the difference between the numerator of one of the convergents of this
continued fraction and I times the denominator of the same convergent, so
that a rather large number of significant figures is needed in I if (12) is to be
evaluated accurately. A comparable situation occurs with other formulae in
this field of study.

The following special formulae, which are obtainable by combining (4) and
(5) with h(u) = 1, are also useful:

(14) B = ¢ f e da,
0

which has a well-known asymptotic series expansion, obtainable by integrating
by parts, and may be expressed as a continued fraction (cf. [8], Eq. (92.16));
and

2-11E(gl) = —6EI) + 6+ 1
2*.21E(¢°I) GEI) — 6+ 6+ 660+ 6
2-31E(¢°I) = —6°E(I) + 6° — 6* + 26° + 426" + 1200 + 120
(15) 2¢-41E(¢') = 6°EUI) — 6" + 6° — 26° + 66* + 3606° + 20406
+ 50400 + 5040
2°.51E(¢°I) = — 0 E(I) + 016° — 1168 + 216" — 316° + 416°
+ 3726" + 35280° + 156246° + 916 + 9!

In deriving these last formulae (15), it was found convenient to use, on the
right side of (5), the identity

¢ f > Gl e de = & f e dalco— e+ 2 — e+ -+ +)
[} [}

7=0

+ 080 er— etz — )
+ 18—+ )

+ 2107%(cs — -+ )

4+ o (r = 1D e,
For completeness, the following results are also recorded:
E@™) = 6"

E(@™T) = ¢ + 26

E@™® = 6"+ 56"+ 86~°

E@™) = 67° 4+ 967° + 33077 + 486",

(16)

17
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In conjunction with (4), these results enable polynomials in ¢ to be found
which, when multiplied by I, give expressions whose expectations are the nega-
tive integral powers of 6 from the first to the seventh. The results for the first,
third, fifth, sixth and seventh negative powers are given essentially in (12) and
(23).

It is also convenient to introduce a further new variable to simplify the
presentation of the results in the following sections. We write

(182) J =1—gI

(18b) 1 — gé f e du
1
=g =87+ -+ (=1)""3-5--.(2r — 1)g~"

19) w
( + (=1)"8-5---(2r — 1)(2r + 1)g e f W gy,
1

It can be shown that J decreases monotonely from 1 to 0, and that gJ increases
monotonely from 0 to 1, when g increases from 0 to infinity.

The form (19) gives an asymptotic series which is satisfactory when ¢ is
sufficiently large. A useful expansion for moderately large values of ¢ is the
continued fraction

-1
J=___g__l -1
1+ 2o g+
(20) 1+ 14—
5¢g 5
1-|-~—49_l g+ —— 4
14+ —— 14—
+ 1 + ete. + g + ete.

The constants in the successive partial numerators are the positive integers,
following the sequence with alternating reversals 1; 3, 2; 5, 4; 7, 6; 9, 8; etc.
Alternatively Laplace’s continued fraction could be used to find I. When ¢
approaches zero,

(21) J =1~ (Gm)"" + 0(g).

In the notation adopted in the National Bureau of Standards’ Tables of
Probability Functions ([9], p. xix),

I = g—l/ZF(gll2), J =1— L(2—1/2gll2).

Hence a published table of either F(z) or L(z) may be used to shorten the
computations, provided it gives enough significant digits. Table I gives I, J
and gJ for certain values of g, chosen because Sheppard’s 1939 tables [7] could
be used for them without interpolation. Burgess’s Table 3 [6], which is un-
fortunately ‘seriously infested with error’ according to page x of Sheppard’s
tables [7], would similarly lead directly to values for which g is an exact square.
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TABLE 1

g I J gJ

1 .65567 95424 .34432 04576 .34432 04576

4 .21068 46146 .15726 15414 .62904 61657

9 .10153 00996 .08622 91039 .77606 19348
16 .05916 30957 .05339 04683 .85424 74935+
25 .03856 16209 .03595 94764 .89898 69106
36 .02706 29435— .02573 40346 .92642 52463
49 .02001 48834 .01927 07158 .94426 50756
64 .01539 14954 .01494 42939 .95643 48119
81 .01219 85870 .01191 44568 .96507 10004
100 .00990 28596 .00971 40353 .97140 35283

3. Conditional means and variances of certain statistics. The cumulants of
the general Inverse Gaussian variate were given in (9) of Paper I. Since they
are of the form of (8), we can use (9) of the present paper and get

(22) EG, | m;\n) = 2m(En?) e f (w — 1) du/(r — 2)1,
1

from which
ExNks) = E(Ry | m; N\, n) = nm’J = N7'm’gJ = Nng™J
(23)  En'(xs) = E(&s | m; )\, n) = 3n'm’{(g + 3)J — 1}
Eg'(xa) = E(&|m; )\, n) = 3dmA{(g" + 10g + 15)J — g — 7}.

These formulae may be verified by using (4) and (17). The terms within the
braces in (23) are the same as occur in the successive convergents of the con-
tinued fraction expansion (20), so that, in a similar way as the computation
of (12), high precision is needed in J to give accurate numerical results. For
example, when g = 25, if we took I = 0.0385616 or J = 0.035959
or L = 0.964041, which are correct according to the usual rounding-off rules
to the last digit shown, the rounding error (which is 0.21 of the last place shown
for I, and 0.48 of the last place shown for J and L) would give a value for B (k)
which would be 12 per cent too high if I were used, or 11 per cent too low if
J or L were used.

When ¢ is large, the asymptotic expansion of the Hermite polynomial given
by Jeffreys and Jeffreys ([5], 23.082) gives

S IN(m\ = (2 + 2r — 3)!
24) Bl | m; X, n) ~ 0 <§X> =3l — 2)1(—29)°
From this, or by using the asymptotic series expansion (19) for J,
E(s | m; N, n) ~ N'm*(1 — 3¢ + 15g7° — 105g° + 94567 — -+ )

E(&s | m; N\, n) ~ 3\ m’(1 — 10" + 105~ — 1260g~°
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(25) + 17325¢7F — ..+ )
E(®|m; N, n) ~ 150" m’(1 — 21g™* + 378¢™% — 6930¢™°
+ 1351357 — ... ).

4. Conditional variance of Cochran’s x> statistic. By the same technique of
inverting a Laplace transform, as was shown previously ([4], p. 48), the con-
ditional variance of the usual unbiased mean square estimator—viz, &* =
> (@ — m)*/(n — 1)—of k, can be found. We first find

(26) BE mnn = "T ) + 1 g

for which an exact expression in terms of I or J can be found by using (12) and
(23), since k3 = 6~ °\*n’. The required conditional variance is obtainable by sub-
tracting the square of E(s’ | m; A, n) from (26). The asymptotic form is

2m? 3(n — 6)m
(n — 1))\2{1 + An

6(12n — 47)m’
- An?

Var (s | m;\, n) ~

@7
+

30(47n — 152)m’
— — b

For comparison with some of the results already given [4] for the Inverse
Poisson (or chi-square type) and the Poisson types of distribution, and also
to provide a more direct comparison with the exact chi-square distribution
which occurs in the distribution of the maximum likelihood estimator of A, we
may consider a measure of dispersion equivalent to that studied by Cochran
{10] for other distributions:

(28) xi = (n — 1)§/E(s’ | m; \, n).
Obviously
EGG |mynn) =n — 1.
By using (25) and (27), we get, when g is large,
Var (x5 | m;\, n) ~ 2(n — 1){1 + g’%(l - 5)

n

54m’ 59
* (1 “1—871)+} '

It will be noticed that the absolute values of the leading terms in the series
in both (27) and (29) are minimized, as functions of the sample size n, and
simultaneously become very insensitive to the precise value of A, when = is
quite small—between 3 and 6 approximately. With the Inverse Poisson dis-

tribution the second term in the series corresponding to (29) was found to
vanish when n = 5. It may therefore be surmised that the standard chi-square

(29)
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distribution will be a good approximation to that of x: with samples of about
this size, with either the Inverse Gaussian or the Inverse Poisson distribution,
assuming that the correct regression formula E,'(k;) is used in (28). An ap-
proximate confidence or fiducial interval for X may be derived from this result.

5. An approximate estimator of N\ The statistic s»~° might be used as an
estimator of N, as an alternative to the estimator of maximum likelihood dis-
cussed in Paper I. The conditional mean and variance of s’m™® are obtainable
from the above results, to provide a partial check on its suitability for this
purpose. Thus from (23),

(30) E(™m™ | m; N, n) = XgJ = 2(g — ¢'I).

The series expansions of this formula and of the formula for the conditional
variance are obtainable immediately from (25) and (27). Both the expectation
and the variance depend to some extent on m, in contrast to the correspond-
ing results which follow from (22) in Paper I, viz,

(31) E’{Zn; (@7t = m™)/(n — 1) | my\, n} = 1/\,

(32) Var{il (@7t — m™)/(n — 1) | m}, n} = 2/\(n — 1).

The overall expectation of s'm™ is, from (4), (15) and (30),
E{s'm™ | ¢, \, n}

33 o
(®3) = [2 + 2¢n — (¢n)* + (¢n)’ — (¢n)’e*" L 2™ dx]/8\
1{ 1 [41 5! (=)™ (r — 1!
=21 = | == T
>\ 2221 2 r—4
(34) on  (¢m) (¢m)

+ (¢n)'e*" f¢ (;,131” e dx]}.

The formula (34) might be used as an asymptotic series for computations, or a
continued fraction might be found.

The conditional mean square error, E(s'm™® — 2X7's'm™ + A7 | m; A, n),
may be evaluated by using the results of (23) and (26). The exact overall mean
square error can be found from it by using (4) and (15), but the full expression
is too lengthy to be given here. Its asymptotic series expansion is

2 —3 _ y—1y2 ~ 2 3(72—6)
L 15(6n —33) | 105@7n —33) |
(¢m)* (¢n)® [

This formula is sufficient to show that sm ™ is a “consistent” estimator of

2. By comparison with (31) and (32), its efficiency, on the basis of the mean
square error or the variance, is seen to be asymptotically ¢/(¢ + 3).
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