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1. Summary. The system to be studied consists of a service unit and a queue
of customers waiting to be served. Service-times of customers are independent,
nonnegative variates with the common distribution B(v) having a finite first
moment b, . Customers arrive in a Poisson process (see Feller [4], p. 364) of in-
tensity A; they form a queue and are served in order of arrival, with no defections
from the queue. For previous work on this queueing system see for instance
Pollaczek [11], Khintchine [9], Lindley [10], Kendall [7], [8], Smith [12], Bailey
[1], and Takécs [14].

Let W(t) be the time a customer would have to wait if he arrived at ¢. The
forward Kolmogorov equation for the distribution of W (%) is solved in principle
by the use of Laplace integrals, and E {exp{ —sW(¢)}} is determined in terms of
W(0) and the root of a possibly transcendental equation. It is shown that any
analytic function of the root can be expanded in Lagrange’s series, which pro-
vides a way of actually computing the transition probabilities of the process.
Let z be the first zero of W(t). A series for E{exp{—7z}} is obtained, and it is
proved that pr{z < «} = 1if and only if Ab; £ 1. From a functional relation
between E{W(t)} and pr{W({) = 0} the covariance function R of W(¢) is deter-
mined. If the service-time distribution B(v) has a finite third moment, then R
is absolutely integrable, and the spectral distribution of W(¢) is absolutely con-
tinuous.

2. The distributions of waiting-time and busy-time. Let W(¢) be the in-
stantaneous waiting-time. That is, let W(¢) be the time that a customer arriving
at ¢ would have to wait before beginning his service. Evidently W(¢) jumps up-
ward discontinuously every time someone arrives who has a nonzero service
time. Otherwise W (¢) approaches 0 with slope —1 until it jumps again or reaches
0. At 0 it stays =0 until another jump occurs. The magnitudes of the jumps are
the (independent) service-times of the customers arriving at the jumps. W(¢) is a
continuous parameter Markov process of the mixed type considered in Feller
[5]. Let P(w, t) = pr{W(t) =< w}. As shown in Takécs [14], the forward Kolmo-
gorov equation of the process is

OP(w, t) _ dP(w, t)
at ow

and if ¢(s, t) = E{exp{—sW(t)}} for Re(s) = 0, we obtain

@.1) — AP(w, 8) + fo " Pw — 0,1) dBO),

@2) 26050 (s, Dls — A1 — BY] — sP(0, ),
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where B*(s) is the Laplace-Stieltjes transform of B(v). Let ¢*(s, 7) be the La-
place transform of ¢ with respect to ¢, and let P*(r) be that of P(0, f).
Then the Kolmogorov equation implies

* o(s, 0) — sP*
@3) Y T IS F NI = BY

By the busy-time, we mean the epoch of the first zero of W(¢) subsequent to 0,
when W(0) is any admissible starting point. The busy-time can be investigated
in terms of a modified process which is like W (t) except that it stays at 0 once it
arrives there. Let z be the first zero in ¢ = 0, and define

Z(t) = W(t), fort = 2,
Z(#) =0, fort > 2.

Let F(u, t) = pr{Z(¢) < u}; the forward Kolmogorov equation for the process
is

oF (u, t) _ oF(u,t)

ot £ MF(u, ) — F(0, 1)]

24) )
+xL¢W—mnﬂmy—m@nmw

Let ¢(s, t) = Efexp{—sZ(t)}}; let y*(s, 7) be the Laplace transform (with
respect to &) of ¢, and also let F*(r) = E{e™ "}, f* = 7F*, for Re() > 0.
Then the Kolmogorov equation 2.4 yields

_ 95,0 = s — A £ 2BY

2.5) y* T =5 T NI = B

To solve for the unknown functions P* and F* we argue that the transforms
o* and ¥* must converge (cf. Bailey [1]) for Re(s) > 0 whenever Re(r) > 0,
and that in this region zeros of 7 — s + A[1l — B*] must coincide with zeros of
the respective numerators. We show that there is an unique zero n(r) of

r — s+ N1 — B

in Re(s) > 0 for Re(r) > 0. Choose a real é such that 0 < & < Re(r), and a real
¢ > Re(r). Consider the line Re(s) = §, and the circle, with center at = + A,
defined by |r — s + A| = XA 4+ e. Define a contour C to be the circle when
Re(s) > &, and to be the line when Re(s) = 8. On the circle, we have the in-
equality

|7 — s+ A =X+ e> 7= AB¥s)|
And on the line Re(s) = &:
|* — s+ A| = Re(r) — & + A > A = \B¥(s)],
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so that the inequality
|7 — s 4+ A > |AB*(s)|

holds over the whole contour C. Now 7 — s + X has no zeros on Re(s) = §,
nor any on the circle [ — s + A\ = A + ¢; and B*(s) is single-valued and
analytic in Re(s) > 0. So by Rouché’s theorem we conclude that » — s + A
and 7 — s + A — AB*(s) have the same number of zeros in Re(s) > 0, namely
one, because 6 can be made arbitrarily small, and e arbitrarily large.

It follows that, with 5 = 5(7),

(2.6) P*(r) = e(n, 0) _ B{e™®)
. n : |
2.7 F*(7) = ¢(n,0) = E{e™?}.

In the proof above we saw that | — s 4+ A > |AB*(s)|, if s is on the contour
C. So by Lagrange’s expansion (p. 133 of [16]), for any function I' analytic on
and inside C, we have

_ S (=N & [dr o, n:l )

@9 T =16 +n + 35 OV T ]
this expansion is valid for Re(r) > 0, and provides a way of actually evaluating
P* and F*. Except for the matter of inverting transforms, the solutions for the
distributions of W(¢), Z(¢), and z are complete. It is easy to see that both ¢*
and ¥* can be inverted explicitly as Laplace transforms with respect to  and
give rise to exponential functions which, together with P* and F* determine
¢ and ¢ in terms of initial conditions.

The results of this section may be collected in the following statements.

THEOREM 1. The function ¢(s, t) = E{exp{—sW(t)}} is determined as the solu-
tion to Eq. (2.2) by the conditions

o(s, 1) = ¢(s, 0) exp {st — \i[1 — B*]}
© - sfot P(0,¢t — y) exp {sy — My[l — B*]} dy,

@ P = [ PO, @ = 7,0 = B,

where n = 5(7) is the unique root of T — 5 + N = AB*(n) in the right half-plane.
TrEOREM 2. The function (s, t) = Ef{exp{—sZ(t)}} is determined by the conds-
tions

¥(s, ) = ¥(s,0) exp {st — M1 — B*]}

@ — [s = X 4+ AB%*] /O.t F(0,t — y) exp {sy — zy[1 — B*]} dy,
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(i) f ¢ 'R0, t) dt = my(n, 0) = rE{e ™},
0

where n is as in Theorem 1.
TrEOREM 3. If T is analytic in the open right half-plane and n is as in Theorem
1, then T'(n) may be expanded by Lagrange’s series.

3. The probability that z is finite. Since F* = E{e¢ "*} = y(n, 0) where 5 is
the root of 7 — # + A[1 — B*(y)] = 0, it seems natural to consider Tauberian
and Abelian theorems in an effort to find the probability that z is finite, and to
ascertain the existence of moments. We therefore turn attention to the behavior
of # as 7 — 0 along the real axis. There is an advantage to considering, instead
of 7, the linear function # of it defined by = A1 — £). Set K(s) = B*(\ — \s),
so that K generates a discrete probability distribution with mean A\b; ; the equa-
tion for # may now be rewritten

and this fact suggests that as = — 0 along the real axis, £ approaches a root of the
familiar equation from branching-process theory, £ = K(£). Let ¢ be the least
nonnegative real root of ¢ = K(¥); for properties of ¢ see Feller [4] or Harris [6].
We now show that £ — ¢ as 7 — 0 along the real axis.

If 7 is real then so is ; for if not, then » is conjugate and not unique. Also,
if > 0, then ¢ < ¢, because 7 > 0 implies K(¢) > &, and in £ < 1 this is
possible only if £ < ¢, since K(0) > 0 and ¢ = K(£) has at most two roots in
(0, 1), one of them being at 1. To show that 0 < 7 < 7' implies &(r) > &(+'),
write & = £(r), £ = &(+'). Then the hypothesis and ¢ < ¢, ¥ < ¢ imply

K@E# - KE) <tg-¢.
Now K'(y) is steadily increasing in 0 < y < 1, so if for some % we have both
u < ¢ and K'(u) > 1, then K(u) > w and K(1) > 1;s0 K'(y) < 1 fory < ¢.
Now if ¢ = ¢, this would imply
K({) — K@) =¥ — ¢

which is impossible. It remains to show that given u < ¢, there exists a » > 0
such that £(r) > u. The equation x = AK(u) — u] uniquely determines an
z > 0, and for this # we must have £(x) = w,orelse r — 7 + N1 — B*(»)] = 0
does not have a unique root 5. If now 0 < = < a, then £(7) > £(@&) = u, as was
to be proved. ‘

It follows that as 7 — 0 along the real axis, 5 — 0 or A(1 — {) according as
Ay = 1 or Aoy > 1. We are now in a position to prove that

pr{z < =} = lim F(0, 1) = Efexp {A(t — 1)Z(0)}}.

t>00

As 7 — 0 along the real axis, the continuity of ¢ yields
F*(7) = ¢ (M1 = ¢), 0)
— Elexp{\¢ — 1)Z(0)}}.



674 V. E. BENES
Since F(0, t) is nondecreasing, so is

t
/ 2F(0, dx);
0
thus F(0, ¢) and F* satisfy the hypothesis of Theorem 4.5 of Widder [15]. This
proves
TarEOREM 4. The probability that the first zero z of W(t) is finite s
pr {z < «} = lim F*(r) = E{exp (AN — 1)Z(0)}}.

>0

This limit is 1 if Ab; = 1, and is <1 if Aoy > 1.

A discussion similar to the above has been given by Takécs [14] for the case
o(s, 0) = B*(s), and this case is also treated by Kendall [7]. We mention in
addition the following results, provable by simple Abelian arguments: If Ab; < 1

and E{Z(0)} < o, then

E{Z(0)}
1— A’
if A\by = 1, or E{Z(0)} = o, then E{z} = .

4. The expectation of W (¢).
TueoreM 5. If E{W(0)} < «, then B{W(£)} ewists for t > 0 and is given by

Efz} =

(4.1) BOVO} = BV} + [ (PO,1) — 1+ Nl du.

A result similar to this appears in Clarke [2]. To prove (4.1), we differentiate
(2.2) with respect to s, and let s — 0. From (4.1) we see that if Ab; > 1, then d/dt
E{W(t)} is positive and bounded away from 0, so that E{W ()} increases indefi-
nitely. Let M*(r) be the Laplace transform with respect to ¢ of E{W(t)}; then
(4.1) implies

M*(7) = E{W/(O)T} + P* _ 1 — \by

,,.2

_ BW(O)} + 1 "'Blexp {—nW(0)}} 1= by

T ’I'2

From this it can be shown that if B(v) has a finite second moment b, and
A < 1, then

. . Aby
A = [ * = ——
{1:2 E{wW()} 171301 M SA = W5
6. The stationary distribution. We call an initial distribution P(w, 0) of W(0)
stationary if it is invariant under the transition probabilities for W(¢), that is,
when P(w, t) = P(w, 0) for all ¢ and w. Let A(w) be the distribution whose
Laplace-Stieltjes transform is given by the Pollaczek-Khintchine formula

A¥(s) = : s(1 — Aby)

_T[I—Tﬁ’ )\bl < 1.
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We show that A (w) is the unique stationary distribution. From (2.3) we see
that a given P(w, 0) is stationary if and only if the corresponding ¢(s, 0) satisfies

¢(Sa 0) . ¢(87 0) - [-5‘40('0, O)]/ﬂ

T r — 8 + M1 — B*@®)]’

pr _ 20,0) _ P(0,0)
7 T

These imply
sP(0, 0)
s — A1 — B¥’
and a simple Abelian argument proves P(0,0) = 1 — Ab; . This shows that 4 (w)
is unique.
To invert the transform A*(s) explicitly, we write it as
1 —2ab
1 — A1 — B%/bis

and notice that since B(») is the distribution of a nonnegative random variable
with mean 0 < b; < «, therefore

o(s,0) =

1 — B*
b] S
is the Laplace transform of the density function
hv) = U@) b— B(v)’
1

where U(v) is the unit step at 0. Define
Ho(w) = U('LU),

Hoi(w) = fo " Halw — v)h(v) do.

Then A*(s) may be inverted, and we have proved
THEOREM 6. A (w) is the unique stationary distribution of W(0). It may be writ-
ten as

A(w) = (1 - >\b1) i—o ()\bl)”Hn('w),

which shows that 4 (w) is decomposable into a single step of magnitude 1 — by
at 0 and an absolutely continuous portion, and that the equilibrium solution of
Pollaczek and Khintchine has the form of a compound geometric distribution,
ie.,

&
W/(oo) = Z Z;,
i=0



676 V. E. BENES

where the 2’s are mutually independent with the common density A(v), and

6. The covariance function and the spectral distribution. In this last section
we assume that Ab; < 1, and that W (0) has the stationary distribution A4 (w).
Let E{W"(0)} = a,, when this exists. The covariance function R(#) of the
process is

6.1) R(t) = fo wE{W(&) | W) = w) dA(w) — a2,
and the I-Japlace transform of R(¢) is
w [, 2 ., —nuw _
(6.2) R*(r) = f [w Way + we " _ w(l - M)L):I dA(w).
0— T T T

Intuitively one might expect that in view of the Poisson arrival process and
the independent service-times, the W (¢) process would have no periodic com-
ponents, and thus a smooth spectral distribution. That this is so under weak
conditions is a consequence of the following:

THEOREM 7. If \by < 1, and B(v) has a finite moment bs of the third order, then

6.3) ]0 “VRW | dt < =

To prove that R(¢) is L;(0, =), we show that R*(r) is the Laplace-Stieltjes
transform of an absolutely continuous (AC) function of bounded total variation
(BTV). We make use of the following result: Let « be a nonnegative random
variable such that 7 {u} and F{u’} both exist; then

—TU
,w{e—r.u — 1 - E{e }

defines an unique variate y = 0 such that distr {y} is AC and E{y} = E{u’} /
2E {u}.

By differentiating A *(s) successively, it can be verified that if b; exists, so do
a; and az, and a; = Ab: / 2(1 — Aby). Let N* = AB*(y) / (+ + M), and let

= L= [0e™)/(r + M)
Y rw/@ = Ab)] F At
1 — N1 = M) — N®)]/7
[ra;/(1'— Aby)] + 7A !
By use of = 7 4+ N — AB*(9) and algebra we can write the integrand of
(6.2) as
wA w(l — b)) AN = M) — NH T — T — N¥)T
—wN (1 — Ab) ™" 4 NN = AL — N¥)77t — T3(1 — N¥7L

By Taylor series arguments and repeated use of the result stated earlier, it can
be shown that if b; exists, then each of T, T, and N*is F{exp{ —ry}} for some

*
,1‘2 =
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suitable y = 0, such that E{y} < o and distr {y} is AC. It follows from Lemma
5 of Smith [13] that for each w, the integrand of (6.2) is the Laplace-Stieltjes
transform of an AC function of BTV. Thercfore R*(r) is also.

From (6.3), and from the remarks on p. 522 of Doob (3], it follows that if
Ab; < 1, and B(v) has a finite moment b; of third order, then W(¢) has an ab-
solutely continuous spectral distribution. The associated spectral density g(x)
is continuous and is given by

g(z) = 4 fow R(t) cos 2rat di = 4 Re{R*(2mix)},

since R* is well defined along the imaginary axis.
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