ON QUEUES WITH POISSON ARRIVALS

By V. E. Beneš

Bell Telephone Laboratories, Incorporated

1. Summary. The system to be studied consists of a service unit and a queue of customers waiting to be served. Service-times of customers are independent, nonnegative variates with the common distribution B(v) having a finite first moment b_1 . Customers arrive in a Poisson process (see Feller [4], p. 364) of intensity λ ; they form a queue and are served in order of arrival, with no defections from the queue. For previous work on this queueing system see for instance Pollaczek [11], Khintchine [9], Lindley [10], Kendall [7], [8], Smith [12], Bailey [1], and Takács [14].

Let W(t) be the time a customer would have to wait if he arrived at t. The forward Kolmogorov equation for the distribution of W(t) is solved in principle by the use of Laplace integrals, and $E\{\exp\{-sW(t)\}\}$ is determined in terms of W(0) and the root of a possibly transcendental equation. It is shown that any analytic function of the root can be expanded in Lagrange's series, which provides a way of actually computing the transition probabilities of the process. Let z be the first zero of W(t). A series for $E\{\exp\{-\tau z\}\}$ is obtained, and it is proved that $\Pr\{z < \infty\} = 1$ if and only if $\lambda b_1 \leq 1$. From a functional relation between $E\{W(t)\}$ and $\Pr\{W(t) = 0\}$ the covariance function R of W(t) is determined. If the service-time distribution B(v) has a finite third moment, then R is absolutely integrable, and the spectral distribution of W(t) is absolutely continuous.

2. The distributions of waiting-time and busy-time. Let W(t) be the instantaneous waiting-time. That is, let W(t) be the time that a customer arriving at t would have to wait before beginning his service. Evidently W(t) jumps upward discontinuously every time someone arrives who has a nonzero service time. Otherwise W(t) approaches 0 with slope -1 until it jumps again or reaches 0. At 0 it stays =0 until another jump occurs. The magnitudes of the jumps are the (independent) service-times of the customers arriving at the jumps. W(t) is a continuous parameter Markov process of the mixed type considered in Feller [5]. Let $P(w, t) = \operatorname{pr}\{W(t) \leq w\}$. As shown in Takács [14], the forward Kolmogorov equation of the process is

(2.1)
$$\frac{\partial P(w,t)}{\partial t} = \frac{\partial P(w,t)}{\partial w} - \lambda P(w,t) + \lambda \int_{0}^{w} P(w-v,t) dB(v),$$

and if $\varphi(s, t) = E\{\exp\{-sW(t)\}\}\$ for $\text{Re}(s) \ge 0$, we obtain

(2.2)
$$\frac{\partial \varphi(s,t)}{\partial t} = \varphi(s,t)[s-\lambda(1-B^*)] - sP(0,t),$$

Received July 6, 1956; revised January 14, 1957.

where $B^*(s)$ is the Laplace-Stieltjes transform of B(v). Let $\varphi^*(s, \tau)$ be the Laplace transform of φ with respect to t, and let $P^*(\tau)$ be that of P(0, t).

Then the Kolmogorov equation implies

(2.3)
$$\varphi^* = \frac{\varphi(s,0) - sP^*}{\tau - s + \lambda[1 - B^*]}.$$

By the busy-time, we mean the epoch of the first zero of W(t) subsequent to 0, when W(0) is any admissible starting point. The busy-time can be investigated in terms of a modified process which is like W(t) except that it stays at 0 once it arrives there. Let z be the first zero in $t \ge 0$, and define

$$Z(t) = W(t),$$
 for $t \le z$,
 $Z(t) = 0$, for $t > z$.

Let $F(u, t) = pr\{Z(t) \le u\}$; the forward Kolmogorov equation for the process is

(2.4)
$$\frac{\partial F(u,t)}{\partial t} = \frac{\partial F(u,t)}{\partial u} - \lambda [F(u,t) - F(0,t)] + \lambda \int_{0}^{u} F(u-v,t) dB(v) - \lambda F(0,t)B(u).$$

Let $\psi(s, t) = E\{\exp\{-sZ(t)\}\}\$; let $\psi^*(s, \tau)$ be the Laplace transform (with respect to t) of ψ , and also let $F^*(\tau) = E\{e^{-\tau z}\}$, $f^* = \tau F^*$, for $Re(\tau) > 0$.

Then the Kolmogorov equation 2.4 yields

(2.5)
$$\psi^* = \frac{\psi(s,0) - f^*[s - \lambda + \lambda B^*]}{\tau - s + \lambda[1 - B^*]}.$$

To solve for the unknown functions P^* and F^* we argue that the transforms φ^* and ψ^* must converge (cf. Bailey [1]) for Re(s) > 0 whenever $\text{Re}(\tau) > 0$, and that in this region zeros of $\tau - s + \lambda[1 - B^*]$ must coincide with zeros of the respective numerators. We show that there is an unique zero $\eta(\tau)$ of

$$\tau - s + \lambda [1 - B^*]$$

in $\operatorname{Re}(s) > 0$ for $\operatorname{Re}(\tau) > 0$. Choose a real δ such that $0 < \delta < \operatorname{Re}(\tau)$, and a real $\epsilon > \operatorname{Re}(\tau)$. Consider the line $\operatorname{Re}(s) = \delta$, and the circle, with center at $\tau + \lambda$, defined by $|\tau - s + \lambda| = \lambda + \epsilon$. Define a contour C to be the circle when $\operatorname{Re}(s) > \delta$, and to be the line when $\operatorname{Re}(s) = \delta$. On the circle, we have the inequality

$$|\tau - s + \lambda| = \lambda + \epsilon > \lambda \ge |\lambda B^*(s)|.$$

And on the line $Re(s) = \delta$:

$$|\tau - s + \lambda| \ge \operatorname{Re}(\tau) - \delta + \lambda > \lambda \ge |\lambda B^*(s)|,$$

so that the inequality

$$|\tau - s + \lambda| > |\lambda B^*(s)|$$

holds over the whole contour C. Now $\tau - s + \lambda$ has no zeros on $\text{Re}(s) = \delta$, nor any on the circle $|\tau - s + \lambda| = \lambda + \epsilon$; and $B^*(s)$ is single-valued and analytic in Re(s) > 0. So by Rouché's theorem we conclude that $\tau - s + \lambda$ and $\tau - s + \lambda - \lambda B^*(s)$ have the same number of zeros in Re(s) > 0, namely one, because δ can be made arbitrarily small, and ϵ arbitrarily large.

It follows that, with $\eta = \eta(\tau)$,

(2.6)
$$P^*(\tau) = \frac{\varphi(\eta, 0)}{\eta} = \frac{E\{e^{-\eta W(0)}\}}{\eta},$$

(2.7)
$$F^*(\tau) = \psi(\eta, 0) = E\{e^{-\eta Z(0)}\}.$$

In the proof above we saw that $|\tau - s + \lambda| > |\lambda B^*(s)|$, if s is on the contour C. So by Lagrange's expansion (p. 133 of [16]), for any function Γ analytic on and inside C, we have

(2.8)
$$\Gamma(\eta) = \Gamma(\tau + \lambda) + \sum_{n=1}^{\infty} \frac{(-\lambda)^n}{n!} \frac{d^{n-1}}{ds^{n-1}} \left[\frac{d\Gamma}{ds} \left(B^*(s) \right)^n \right]_{s=\tau+\lambda};$$

this expansion is valid for $\text{Re}(\tau) > 0$, and provides a way of actually evaluating P^* and F^* . Except for the matter of inverting transforms, the solutions for the distributions of W(t), Z(t), and z are complete. It is easy to see that both φ^* and ψ^* can be inverted explicitly as Laplace transforms with respect to τ and give rise to exponential functions which, together with P^* and F^* , determine φ and ψ in terms of initial conditions.

The results of this section may be collected in the following statements.

THEOREM 1. The function $\varphi(s, t) = E\{\exp\{-sW(t)\}\}\$ is determined as the solution to Eq. (2.2) by the conditions

$$\varphi(s, t) = \varphi(s, 0) \exp \left\{ st - \lambda t[1 - B^*] \right\}$$

(i)
$$- s \int_0^t P(0, t - y) \exp \{ sy - \lambda y [1 - B^*] \} dy,$$

(ii)
$$P^*(\tau) = \int_0^\infty e^{-\tau t} P(0, t) \ dt = \eta^{-1} \varphi(\eta, 0) = \eta^{-1} E\{e^{-\eta W(0)}\},$$

where $\eta = \eta(\tau)$ is the unique root of $\tau - \eta + \lambda = \lambda B^*(\eta)$ in the right half-plane. Theorem 2. The function $\psi(s,t) = E\{\exp\{-sZ(t)\}\}\$ is determined by the conditions

$$\psi(s, t) = \psi(s, 0) \exp \{st - \lambda t[1 - B^*]\}$$

$$- [s - \lambda + \lambda B^*] \int_0^t F(0, t - y) \exp \{sy - \lambda y[1 - B^*]\} dy,$$

(ii)
$$\int_0^\infty e^{-\tau t} F(0, t) dt = \tau \psi(\eta, 0) = \tau E\{e^{-\eta Z(0)}\},$$

where η is as in Theorem 1.

Theorem 3. If Γ is analytic in the open right half-plane and η is as in Theorem 1, then $\Gamma(\eta)$ may be expanded by Lagrange's series.

3. The probability that z is finite. Since $F^* = E\{e^{-\tau z}\} = \psi(\eta, 0)$ where η is the root of $\tau - \eta + \lambda[1 - B^*(\eta)] = 0$, it seems natural to consider Tauberian and Abelian theorems in an effort to find the probability that z is finite, and to ascertain the existence of moments. We therefore turn attention to the behavior of η as $\tau \to 0$ along the real axis. There is an advantage to considering, instead of η , the linear function ξ of it defined by $\eta = \lambda(1 - \xi)$. Set $K(s) = B^*(\lambda - \lambda s)$, so that K generates a discrete probability distribution with mean λb_1 ; the equation for η may now be rewritten

$$\frac{\tau}{\lambda} + \xi = K(\xi),$$

and this fact suggests that as $\tau \to 0$ along the real axis, ξ approaches a root of the familiar equation from branching-process theory, $\xi = K(\xi)$. Let ζ be the least nonnegative real root of $\xi = K(\xi)$; for properties of ζ see Feller [4] or Harris [6]. We now show that $\xi \to \zeta$ as $\tau \to 0$ along the real axis.

If τ is real then so is ξ ; for if not, then η is conjugate and not unique. Also, if $\tau > 0$, then $\xi < \zeta$, because $\tau > 0$ implies $K(\xi) > \xi$, and in $\xi < 1$ this is possible only if $\xi < \zeta$, since K(0) > 0 and $\xi = K(\xi)$ has at most two roots in (0, 1), one of them being at 1. To show that $0 < \tau < \tau'$ implies $\xi(\tau) > \xi(\tau')$, write $\xi = \xi(\tau)$, $\xi' = \xi(\tau')$. Then the hypothesis and $\xi < \zeta$, $\xi' < \zeta$ imply

$$K(\xi) - K(\xi') < \xi - \xi'.$$

Now K'(y) is steadily increasing in 0 < y < 1, so if for some u we have both $u < \zeta$ and K'(u) > 1, then K(u) > u and K(1) > 1; so $K'(y) \le 1$ for $y < \zeta$. Now if $\xi \le \xi'$, this would imply

$$K(\xi') - K(\xi) \leq \xi' - \xi$$

which is impossible. It remains to show that given $u < \zeta$, there exists a $\tau > 0$ such that $\xi(\tau) > u$. The equation $x = \lambda [K(u) - u]$ uniquely determines an x > 0, and for this x we must have $\xi(x) = u$, or else $\tau - \eta + \lambda [1 - B^*(\eta)] = 0$ does not have a unique root η . If now $0 < \tau < x$, then $\xi(\tau) > \xi(x) = u$, as was to be proved.

It follows that as $\tau \to 0$ along the real axis, $\eta \to 0$ or $\lambda(1 - \zeta)$ according as $\lambda b_1 \leq 1$ or $\lambda b_1 > 1$. We are now in a position to prove that

$$\text{pr } \{z < \infty\} = \lim_{t \to \infty} F(0, t) = E\{\exp \{\lambda(\zeta - 1)Z(0)\}\}.$$

As $\tau \to 0$ along the real axis, the continuity of ψ yields

$$F^*(\tau) \to \psi(\lambda(1-\zeta), 0)$$

 $\to E\{\exp\{\lambda(\zeta-1)Z(0)\}\}.$

Since F(0, t) is nondecreasing, so is

$$\int_0^t x F(0, dx);$$

thus F(0, t) and F^* satisfy the hypothesis of Theorem 4.5 of Widder [15]. This proves

Theorem 4. The probability that the first zero z of W(t) is finite is

pr
$$\{z < \infty\} = \lim_{\tau \to 0} F^*(\tau) = E\{\exp\{\lambda(\zeta - 1)Z(0)\}\}.$$

This limit is 1 if $\lambda b_1 \leq 1$, and is <1 if $\lambda b_1 > 1$.

A discussion similar to the above has been given by Takács [14] for the case $\varphi(s, 0) = B^*(s)$, and this case is also treated by Kendall [7]. We mention in addition the following results, provable by simple Abelian arguments: If $\lambda b_1 < 1$ and $E\{Z(0)\} < \infty$, then

$$E\{z\} = \frac{E\{Z(0)\}}{1 - \lambda b_1};$$

if $\lambda b_1 \geq 1$, or $E\{Z(0)\} = \infty$, then $E\{z\} = \infty$.

4. The expectation of W(t).

THEOREM 5. If $E\{W(0)\} < \infty$, then $E\{W(t)\}$ exists for t > 0 and is given by

(4.1)
$$E\{W(t)\} = E\{W(0)\} + \int_0^t [P(0, u) - 1 + \lambda b_1] du.$$

A result similar to this appears in Clarke [2]. To prove (4.1), we differentiate (2.2) with respect to s, and let $s \to 0$. From (4.1) we see that if $\lambda b_1 > 1$, then $d/dt E\{W(t)\}$ is positive and bounded away from 0, so that $E\{W(t)\}$ increases indefinitely. Let $M^*(\tau)$ be the Laplace transform with respect to t of $E\{W(t)\}$; then (4.1) implies

$$\begin{split} M^*(\tau) &= \frac{E\{W(0)\} \, + P^*}{\tau} - \frac{1 - \lambda b_1}{\tau^2} \\ &= \frac{E\{W(0)\} \, + \, \eta^{-1} E\{\exp\{-\eta W(0)\}\}}{\tau} - \frac{1 - \lambda b_1}{\tau^2}. \end{split}$$

From this it can be shown that if B(v) has a finite second moment b_2 , and $\lambda b_1 < 1$, then

$$\lim_{t \to \infty} E\{W(t)\} = \lim_{t \to 0} \tau M^* = \frac{\lambda b_2}{2(1 - \lambda b_1)}.$$

5. The stationary distribution. We call an initial distribution P(w, 0) of W(0) stationary if it is invariant under the transition probabilities for W(t), that is, when P(w, t) = P(w, 0) for all t and w. Let A(w) be the distribution whose Laplace-Stieltjes transform is given by the Pollaczek-Khintchine formula

$$A^*(s) = \frac{s(1-\lambda b_1)}{s-\lambda[1-B^*]}, \quad \lambda b_1 < 1.$$

We show that A(w) is the unique stationary distribution. From (2.3) we see that a given P(w, 0) is stationary if and only if the corresponding $\varphi(s, 0)$ satisfies

$$\frac{\varphi(s,0)}{\tau} = \frac{\varphi(s,0) - [s\varphi(\eta,0)]/\eta}{\tau - s + \lambda[1 - B^*(s)]},$$

$$P^* = \frac{\varphi(\eta,0)}{\eta} = \frac{P(0,0)}{\tau}.$$

These imply

$$\varphi(s,0) = \frac{sP(0,0)}{s - \lambda[1-B^*]},$$

and a simple Abelian argument proves $P(0,0) = 1 - \lambda b_1$. This shows that A(w) is unique.

To invert the transform $A^*(s)$ explicitly, we write it as

$$\frac{1-\lambda b_1}{1-\lambda b_1(1-B^*)/b_1s}$$

and notice that since B(v) is the distribution of a nonnegative random variable with mean $0 < b_1 < \infty$, therefore

$$\frac{1-B^*}{b_1s}$$

is the Laplace transform of the density function

$$h(v) = \frac{U(v) - B(v)}{b_1},$$

where U(v) is the unit step at 0. Define

$$H_0(w) = U(w),$$

 $H_{n+1}(w) = \int_0^w H_n(w - v)h(v) dv.$

Then $A^*(s)$ may be inverted, and we have proved

Theorem 6. A(w) is the unique stationary distribution of W(0). It may be written as

$$A(w) = (1 - \lambda b_1) \sum_{n=0}^{\infty} (\lambda b_1)^n H_n(w),$$

which shows that A(w) is decomposable into a single step of magnitude $1 - \lambda b_1$ at 0 and an absolutely continuous portion, and that the equilibrium solution of Pollaczek and Khintchine has the form of a compound geometric distribution, i.e.,

$$W(\infty) = \sum_{i=0}^k x_i,$$

where the x's are mutually independent with the common density h(v), and $pr\{k=n\} = (1-\lambda b_1)(\lambda b_1)^n$.

6. The covariance function and the spectral distribution. In this last section we assume that $\lambda b_1 < 1$, and that W(0) has the stationary distribution A(w). Let $E\{W^n(0)\} = a_n$, when this exists. The covariance function R(t) of the process is

(6.1)
$$R(t) = \int_0^\infty wE\{W(t) \mid W(0) = w\} dA(w) - a_1^2,$$

and the Laplace transform of R(t) is

(6.2)
$$R^*(\tau) = \int_{0-}^{\infty} \left[\frac{w^2 - wa_1}{\tau} + \frac{we^{-\eta w}}{\eta \tau} - \frac{w(1 - \lambda b_1)}{\tau^2} \right] dA(w).$$

Intuitively one might expect that in view of the Poisson arrival process and the independent service-times, the W(t) process would have no periodic components, and thus a smooth spectral distribution. That this is so under weak conditions is a consequence of the following:

THEOREM 7. If $\lambda b_1 < 1$, and B(v) has a finite moment b_3 of the third order, then

To prove that R(t) is $L_1(0, \infty)$, we show that $R^*(\tau)$ is the Laplace-Stieltjes transform of an absolutely continuous (AC) function of bounded total variation (BTV). We make use of the following result: Let u be a nonnegative random variable such that $E\{u\}$ and $E\{u^2\}$ both exist; then

$$E\{e^{-\tau y}\} = \frac{1 - E\{e^{-\tau u}\}}{\tau E\{u\}}$$

defines an unique variate $y \ge 0$ such that distr $\{y\}$ is AC and $E\{y\} = E\{u^2\} / 2E\{u\}$.

By differentiating $A^*(s)$ successively, it can be verified that if b_3 exists, so do a_1 and a_2 , and $a_1 = \lambda b_2 / 2(1 - \lambda b_1)$. Let $N^* = \lambda B^*(\eta) / (\tau + \lambda)$, and let

$$T_{1}^{*} = \frac{1 - \left[(\lambda e^{-\eta w})/(\tau + \lambda) \right]}{[\tau w/(1 - \lambda b_{1})] + \tau \lambda^{-1}},$$

$$T_{2}^{*} = \frac{1 - \left[\lambda (1 - \lambda b_{1})(1 - N^{*}) \right]/\tau}{[\tau a_{1}/(1' - \lambda b_{1})] + \tau \lambda^{-1}},$$

By use of $\eta = \tau + \lambda - \lambda B^*(\eta)$ and algebra we can write the integrand of (6.2) as

$$w\lambda^{-1}[w(1-\lambda b_1)^{-1}+\lambda^{-1}][\lambda(1-\lambda b_1)(1-N^*)\tau^{-1}-T_1^*](1-N^*)^{-1}\\-w\lambda^{-1}[a_1(1-\lambda b_1)^{-1}+\lambda^{-1}][\lambda(1-\lambda b_1)(1-N^*)\tau^{-1}-T_2^*](1-N^*)^{-1}.$$

By Taylor series arguments and repeated use of the result stated earlier, it can be shown that if b_3 exists, then each of T_1^* , T_2^* , and N^* is $E\{\exp\{-\tau y\}\}$ for some

suitable $y \ge 0$, such that $E\{y\} < \infty$ and distr $\{y\}$ is AC. It follows from Lemma 5 of Smith [13] that for each w, the integrand of (6.2) is the Laplace-Stieltjes transform of an AC function of BTV. Therefore $R^*(\tau)$ is also.

From (6.3), and from the remarks on p. 522 of Doob [3], it follows that if $\lambda b_1 < 1$, and B(v) has a finite moment b_3 of third order, then W(t) has an absolutely continuous spectral distribution. The associated spectral density g(x) is continuous and is given by

$$g(x) = 4 \int_0^\infty R(t) \cos 2\pi x t \, dt = 4 \operatorname{Re}\{R^*(2\pi i x)\},$$

since R^* is well defined along the imaginary axis.

REFERENCES

- N. T. J. Bailey, "A continuous time treatment of a simple queue using generating functions," J. Roy. Stat. Soc., Series B, Vol. 15 (1954), pp. 288-291.
- [2] A. B. CLARKE, "A waiting line process of Markov type," Ann. Math. Stat., Vol. 27 (1956), pp. 452-459.
- [3] J. L. Doob, Stochastic Processes, John Wiley & Sons, Inc., New York, 1953.
- [4] W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley & Sons, Inc., New York, 1950.
- [5] W. Feller, "Zur Theorie der Stochastischen Prozesse," Math. Ann., Vol. 113 (1936), pp. 113-160.
- [6] T. E. HARRIS, "Branching processes," Ann. Math. Stat., Vol. 19 (1948), pp. 474-494.
- [7] D. G. Kendall, "Some problems in the theory of queues," J. Roy. Stat. Soc., Series B, Vol. 13 (1951), pp. 151-173 and 184-185.
- [8] D. G. Kendall, "Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain," Ann. Math. Stat., Vol. 24 (1953), pp. 338-354.
- [9] A. KHINTCHINE, "Matematischeskaya teoriya statsionarnoi ocheredi," Matematicheskii sbornik, Vol. 39 (1932), pp. 73-84.
- [10] D. V. Lindley, "The theory of queues with a single server," Proc. Cambridge Philos. Soc., Vol. 48 (1952), pp. 277-289.
- [11] F. POLLACZEK, "Uber eine Aufgabe der Wahrscheinlichkeitsrechnung," Math. Zeit., Vol. 32 (1930), pp. 64-100 and 729-850.
- [12] W. L. SMITH, "On the distribution of queueing times," Proc. Cambridge Philos. Soc., Vol. 49 (1953), pp. 449-461.
- [13] W. L. Smith, "Asymptotic renewal theorems," Proc. Roy. Soc. Edinburgh, Sec. A, Vol. 64 (1954), pp. 9-48.
- [14] L. Takács, "Investigation of waiting time problems by reduction to Markov processes," Acta Math. (Budapest) Vol. 6 (1955), pp. 101-129.
- [15] D. Widder, The Laplace Transform, Princeton, 1941.
- [16] E. Whittaker and G. N. Watson, Modern Analysis, Cambridge, 1946.