BOUNDS FOR THE VARIANCE OF THE MANN-WHITNEY STATISTIC
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1. Summary. Let X, Y be independent random variables with continuous
cumulative probability functions and let

p = Pr{¥ < X}.

For the variance of the Mann-Whitney statistic U, upper and lower bounds are
obtained in terms of p, for the case of any X and Y as well as for the case of
stochastically comparable X, Y. The results for the case of stochastic compara-
bility are new, while the inequalities in the case of arbitrary X, Y have either
been obtained by van Dantzig or are a consequence of other inequalities due to
van Dantzig.

9. Introduction and statement of results. Let X and Y be independent random
variables with the continuous cumulative probability distribution functions

(cdf’s) F(zr) and G(y), respectively, and let Xi, X»,---, X.. and
Yy, Y., -+, Y. be samples of these random variables. We consider the statistic
(2.1) U = number of pairs (X;, Y;) such that ¥; < X,

introduced by Wilcoxon [1] for m = n and by Mann and Whitney [2] in the gen-
eral case.

To simplify arguments we shall from now on assume that F(#) and G(z) are
both strictly increasing functions, although it can be easily seen that all con-
clusions remain valid without this restriction. The function

(22) L) = FIE™ @),

which will be called the “relative distribution function of X and Y,” is a con-
venient means of reducing many problems involving two probability distributions
to a study of a cumulative probability function on the unit interval. One verifies
easily that X and Y have the same distribution if and only if L(@) = ¢ for
0 < ¢ < 1. Similarly X is stochastically smaller than ¥, that is, F(s) = G(s)
for —o < s < 4+ if and only if L() = tfor0 < ¢ < 1.

Using the quantity

+o0 1
@3) p=Pr(¥ <X} =[ 66 aFe = [ tdL0)

‘and the relative distribution function L, one can rewrite expressions for the
expectation and the variance of U obtained by van Dantzig [4] in the form

(24.1) E(U) = mnp,
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934 Z. W. BIRNBAUM AND ORVAL M. KLOSE

(24.2) *(U) = mn[(m — 1)¢’ + (n — 1) + p(1 — p)],
where

¢ = _+°° F*dG — (fw F dG>2 = [w F'd@ — (1 — p)* = JSF(Y)]
(243) ’

- [(POa-a-pm

o0 +e0

¥ = G”dF-(

—00

G@y=[waF-ﬁ=fwwn

0

(24.4) .
=£f@®—ﬁ

In Sec. 3, inequalities involving ¢ and +* will be derived which will be used to
obtain Theorem 3.2 on the sharp upper bound

(2.5) (U) £ mnp(l — P) max (m, n)

and Theorem 3.5 on the sharp lower bound

uv[nr(l—r)—l—(z"%] iffjllézr
(26) (V) 2{wlrv2(u = Do — Dr — (u +» — 2r* + r(l — 7)]
if £ — 11 z 2

where 4 = min (m, n), » = max (m, n), r = min (p, 1 — p). The upper bound
(2.5) has been obtained by van Dantzig [4] and is discussed here only for the
sake of completeness and convenient reference. While it is believed that (2.6)
has not been stated elsewhere, the inequalities involving ¢* and 4* on which
it is based are essentially modifications of analogous inequalities obtained by

van Dantzig [5].
In Sec. 4 similar inequalities for ¢* and 4* are obtained which yield Theorem

4.2 on the sharp upper bound
JS(U) = whlA — (1 — 2p)™) — 57
2.7) +ul— 31 — 1 - 2p)*) + 2p — P

+ 3l — (1 = 2p)"*] — p(1 — p)},
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and Theorem 4.5 on the sharp lower bound

28) &) z

mn{ilm +n 4+ 1 + 24/ (m — 1)(m — n)(1 — 2p)¥

—Im(l— P gt a1 — P} T <2,

mn{gp\/2(m — D)(n — Lp — (m + n — 2)p* + p( — p)}
n—1_1
m—1%2p

mn{3lm +n + 1 4+ 2/ (n — D(n — m)(1 — 2p)’]

if 2p <

o 1 —1
LR R St O B S}

under the assumption that X is stochastically smaller than Y, that is, F(s) =
G(s), —© < s < +x. These results are new. Due to the imposition of the
stochastic comparability condition the bounds (2.7) and (2.8) of course are
better than the bounds (2.5) and (2.6) for the general case.

Upper bounds such as (2.5) and (2.7) are useful in problems of estimating the
parameter p by p = U / mn (see [3]). Lower bounds are needed in obtaining in-
equalities for the power of the Mann-Whitney test such as those given in [4].

3. Inequalities for ¢?, v%, ¢*(U) in the general case.
3.1. LemmMa. With the notations of the preceding section we have

1

(3.0) [ 1o —dast—p0-p),
and equality holds for

0 for0=t<p
(3.1.1) L) =

1 forp=t=1
and for
(3.1.2) L) =1 —pfor0 <t < 1.

Proor. In the identity

j; 1 fo t [L(t) — L(s)] ds dt = fo ' (2t — VL@ dt,

the integrand on the left side satisfies 0 < L(f) — L(s) < 1for0 = s = ¢ = 1,
hence L(f) — L(s) = [L(t) — L(s), and

]0 @ — DLE dt = fo ' fo L) — L) ds dt = fo L) di - [ fo L0 dt]

2
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Therefore

1 1 1
f L@ — * dt = f L*) dt — 2 f tL(s) dt + 3
Jo 0 0

g[[o’La)dt]z—folLa) d+3=1-p( - p).

One verifies by direct computation that Ly(f) and Ly(¢) yield equality in (3.1).

3.2. TurorEM. The variance of U has the upper bound
(3.2) o*(U) < mnp(l — p) max (m, n).
Equality holds for L, if n = m, and for Ly if m = n.

Proor. We use the equality

1
¢2+72=fo L@ ~Fd+3—-p -1 —p)*
and, if n = m, write (2.4.2) in the form
o (U) = mn{(m — 1)@ +7°) + (n — m}" + p(1 — p)}

mn{(m - 1) _[ L@ - dt + (n — m)y*

321
+m = DB =5~ 4= 1+ 500 — D).
Noting that
(3.22) ¥ = f P — ¢ < fo “LdLO) — 7 = p(t — p)

and making use of (3.1) we obtain (3.2). Since equality holds for Ly(f) in (3.1)
and in (3.2.2), the upper bound is attained in (3.2) for Ly(f), if n = m. The case
m 2 n follows by a symmetrical argument.

3.3 LEmMA. Let Fy and F, be strictly increasing continuous c.d.f.’s with

+0 +0
(33.) [ mam=p, [ Ran-=p,
hence
(3.3.2) n+pe=1;
and let
2 e 2 2 e e 2
(334) Q1 = [ F1 sz - D, @2 = [ Fz dFl - p2.

Then, for any p1 2 0, pa = 0, 1 + pe > 0, we have

(8.3.5) mes + paos = [plpz - T%:Z]’
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foru = 1,v = 2, as well as for v = 2, v = 1. Inequality (3.3.5) can not be im-
proved if

(3.3.6) Z—“ < min (2p1, 2p2).

Proor. Writing
Fus) =,  FJFP®)) = L),

we have
1 1
D = fo tdL@®), p, = [o L(®) dt,
1 1
oy = f £dL@) — pu, @ = f ') dt — p:.
0 0
For any real o, 8,
! 2 2 o '
O.S__/; [L® —at—ﬁ]”dt=¢,,+p,+§-+ﬁ2—a

(3.3.6.1)
+ alot + pi] — 28p. + aBs

and

2
¢3+a¢i;a—%——api—Pf*(ﬁ2+aﬂ—2ﬂpu)

2 2
= - 2 _ % _ o
= 2(0‘ + ﬁ)Ih (a + 1)1’» 12 (ﬂ + 2) .
For fixed a, the right-hand expression is maximum at 8 = p, — («/2), so that
2 2 _ <«
¢0+a¢‘u =a(p1p2 12)’

Setting & = (uu/k0), We obtain (3.3.5). Equality holds if and only if L(t) =
of + Bfor0 < ¢t < 1, with @ = (uu/p.) and 8 = p, — (a/2), that is, for

= B -
(3.3.7) Ly(t) = “vt + vy S 0<t<l,
and this is a c.d.f. if and only if L(0) = 0, L(1) < 1, which is equivalent with

(3.3.6).
- 3.4. LemMA. Under the assumptions

(3.4.1) P =3

. (fm—1mn—1
m—_—1n= 1)
(34.2) min (n T 1> = 2p,
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we have
(m = D¢+ (n — 17" = (m — 1)(1 — 2p)
(3:43) + 3pV2(m — Dln = Dp — [(m — DA — p)* + (n — 1)pY
= 3pV2m — )(n — Dp — (m + n — 2)p’,

and this inequality can not be improved.

Proor. For any o > 0,0 £ 8 < l, a4+ 8 =1, wehave 0 < 1 ;‘6 =1,
and
1 1
f L) — ot — 1P dt = f (L) — at — B dt
(344) 1-B)/a

1 ) 13
> f (@t +8—1)dg=2tB8-D"

1B/« 3a
From this and

' 2
- 2 = 2 2 _ 2 2 fx—
(344.1) fo L@ = ot = pldt = ¢" + ar’ + (1 = )" + op’ +

- a+§ + o — 28(1 — p)

follows
2

3
drarza-S-al= (-9 —a—g+20-p+&FLZD

For fixed p and «, the right side is maximum for B = 1 — A/2ap. This value
satisfies the conditions0 S 8 < 1,a + 8 = 1, if and only if

a

1
4.

IIA
I\

and then we obtain
(3.4.6) ¢ +ar'z1 -2+ $pv3%p - [op* + (1 — ).

If m 2z n, then (3.4.2) becomes [(n — 1)/(m — )] = 2p, so that
a = [(n — 1)/(m — 1)] satisfies (3.4.5), and for this value of « inequality
(3.4.6) yields (3.4.3).

It m < n, then (3.4.2) becomes [(m — 1)/(n — 1)] > 2p, the value
a = [(n — 1)/(m — 1)] again satisfies (3.4.5) and we obtain (3.4.3) from
(3.4.6). ’

Equality holds in (3.4.4) if and only if

(at+B for 0<t§1———@

LG = “
{ 1 for

1—B<t§1,
a
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so that equality is attained in (3.4.3) for

n — 1 n—1 m— 1
—_ <
m—lt+1 2m—-1p’ 0<t= 22"'n—l
L4(t)= 1
m
<
1, 2pn 1<t__1

3.5. TueoreEM. Under the assumption
(3.5.1) p=}

and with the notations

3.5.2) ¢ = min (m, n), v = max (m, n),
we have
2 —
I L e
(U) z wltpV2(u — D& — Dp — (w +» — 2p" +p(1 — )],
3.54 -
( ) if :_ i > 2p,

and these inequalities can not be improved.

Proor. Assumption (3.5.1) constitutes no loss of generality since, in case it is
not satisfied for p defined by (2.3), it will be satisfied if # and G are interchanged.
Using the notations (3.5.2) and setting in Lemma 3.3: p. = p, po = 1 — p,
pp=m—Lu=n— Lot =+ ¢s = ¢, =pn— 1,4 =v — 1, we obtain
(3.5.3) from (3.3.5) and (2.4.2). Inequality (3.5.4) follows immediately from
Lemma 3.4 and (2.4.2).

4. Inequalities for the case of X and Y stochastically comparable. Throughout
this section X will be assumed stochastically smaller, that is F(s) = G(s) or,
in terms of the relative c.d.f.

(4.0.1) t < L), for0=<tsl.
According to (2.3) this implies
(4.0.2) p=3
We introduce the abbreviations
1
(4.0.3) Mm=£wm—$@
1
(40.4) BL) = [ PO d=¢+0-p

1 1
(40.5) am=ﬁf@@=1-2£m@m=¢+ﬁ
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4.1. LemMA. Let p < } be given and let L(¢) = ¢ be such that [3 L(t) dt = 1 — p.
Consider the family of functions

¢ 0=t<r
(4.1.1) LMt)=74+V1-2p, r=5t<7+V1=-2
!, r+V1T-—2p=<t=<1

defined for 0 < 7 = 1 — \/1 — 2p. For these functions we have
1

(41.2) [Loa=1-p o0s:s1-+T=3,
0

413) A(L) = AL) =31-2p)"", 0=r=1-+/1—2p,
(4.1.4) 31 — 2p)*" + § = B(Lv) = B(L) < B(Ln—v/i=55)
=1-2p+%— 301 -2p",
(4.1.5) 2p — 3+ 2(1 — 2p)** = C(Lh_vizss) = C(L) £ C(L)
=3 -1 - 2p)".

Proor. Since a continuous L(!) = ¢ can be uniformly approximated by a
“‘saw-tooth” function, i.e., by a relative c¢.d.f. whose graph consists of a finite
number of line-segments, either horizontal or on the line ¢ (see Fig. 1), it will be
sufficient to carry out the proof for such functions only.

Let us first consider an “isolated” tooth, such as K in Fig. 1, and translate
it by A > 0 to position K’, thereby replacing L by L*, say. It is clear that

1-p= fol L) dt = folL*(t) dt, A(L) = A(L®,
and
B(L* > B(L), C(@L* < C(L).

Translating each isolated tooth as far as possible to the right we obtain a saw-
tooth function L** for which all teeth are adjacent and the last to the right ends
with a horizontal line-segment with ordinate 1 (such as all teeth in Fig. 1, except
K), and for which

fl L**(t) dt = flL(t) di=1-p,  AL*) = AL),
f 0

B(L**) > B(L), C(L**) < C(L).

Now consider a pair of adjacent teeth, such as M and N in Fig. 1. If the
vertices M, N of these teeth have the coordinates (4 , u1), (f2uz), we replace them
by one tooth with the vertex P(¢;, us) where

t; = Uy — '\/(U2 - u1)2 - 2(t2 - tl)('ltz - ul)-
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LY

t- 3
{CANL IO
Kc
K
A
+ 4

° 1

Fic. 1

Again it is clear that for the resulting L*** we have [§ L***(f) dt = [3 L**(¢) dt,
and one verifies by direct computation that the contribution of the interval
(1, u2) to the integrals A, and B increases as L** is replaced by L***, while the
corresponding contribution to the integral C' decreases. After a finite number of
such steps, each of which merges a tooth with its neighbor to the right, we
obtain L;_,/i=z5, which proves the inequalities involving L;_/i—z, in (4.1.4) and
(4.1.5), while (4.1.3) follows from the observation that A(L.) takes the same
value for each value of r as for the value 7 = 1 — /1 — 2p. The inequalities
involving L, are obtained by an analogous argument in which first all isolated
.saw-teeth are translated to the left as far as possible and then each tooth is, in
succession, merged with its neighbor to the left.

4.2. TaroreM. For p given and any relative c.d.f. L(f) = t with [3 L(t) dt =
1 — p (emplying p < 1), the variance of U has the upper bound

AU) £ wihd1 — A —2p)") — 1+ 4l — 21 — (1 — 2p)*)

4.2
“2) +2p — Pl + 41 — (1 - 2p)*"] — p(1 — p)}.
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Equality holds for L = Lo if n Z m and for L = Ly_\/i=55 if n < m.
Proor. If n = m, we write (3.2.1) in the form

@ (U) = mn{(m — 1)AL) + (n — m)C(L) — (n — m)p®
+ (m — DIF — p' — 1 - p)’l + p(1 — p)}.

Setting L = L, in the right side we obtain the theorem from Lemma 4.1. A
symmetrical argument, stressing B(L) instead of C(L) completes the proof for
n = m.

4.3 Lemma. Under the assumptions (4.0.1) and

n—1
m—1

IIA

(43.1) 2p,

we have
(m — 1)¢" + (n — 1)¥*
(4.3.2) = im+n—2+2(m— 1)(m — n)1 — 2p)}
= [m — DA - p)* 4+ (n — 1)p]]

and this inequality can not be improved.
Proor. If0 = a<1and0 =8 =<1— athen0 = [8/(1 — a)] < 1 and in
view of (4.1) we have

1 1
f L) — ot — B dt = f;/ ) [L&) — ot — B) dt

“33) e
o ! e, (A—a—p)°
= j‘;/(l‘a) (t (273 ﬂ) dt = ——————-—-—3(1 — a) .

From this and (3.4.4.1) follows

e za- & o= (- 4280 —p) — e - f 4 L2 B
(4 Y = 3 P y P 3(1_a) A

For fixed p and «, the right side is maximum for 8 = /(1 — «)(1 — 2p), and
this value satisfies the condition 0 < 8 < 1 — « if and only if « £ 2p. Conse-
quently, for @ < 2p, we have

4oz Hl4+ a4+ 201 — )l — 20)Y) — [ep® + 1 = p)].

Setting @ = [(n — 1)/(m — 1)] which is <2p by (4.3.1) we obtain (4.3.2).
Equality in (4.3.3) is attained if and only if
B

1 —«a

at+pB for 0 <t =

L@t) =
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so that, with 8 = v/(1 — «)(1 — 2p),@ = [(n — 1)/(m — 1)], we obtain the

function
Loy 4/
= < _ _n—-1
Ls(t) = < for O<t=/‘/(1 2p)/<1 m—l)
1
F <
1) <t=1.

14

4.4, LemMa. Under the assumptions (4.0.1) and

m— 1
n—1

(44.1) = 2p,

we have
(m — )¢ + (n — 1y’
(4.4.2) 2 3m +n — 2+ 20 — D — m)1 — 2p)T}
— [(m — Dp* + (n — 1) — p)],

and this inequality can not be improved.
Proor.Iff e = 1and0 < — 8 < a — 1, then

0=8/1-a)=(1—-8/as1
and in view of (4.0.1) we have

f L) — at — 8] dt>f1 “+f1_ﬁ_] “( — ot — ) dt
443)

[+4

1i[ 8 | (@+8-—1)
+l§§(at+ﬁ—1)2dt=§[l_a+a ]

From this and (3.4.4.1) follows
2
Fterza—Z—ap'—(1—p'—a—6+20-p

[ & (a+ﬁ—1)3:|
+§[1—a+ a )

Tor fixed a, p, the right side is maximum for 8 = 1 — a + Va(a — 1)(1 — 2p)
and this satisfies the condition 0 < —8 < « — 1 if and only if (1/a) = 2
It follows that for (1/a) < 2p,

&+ ay' 2 Hl+ a+ 2ala — (1 — 2p)} — [ — p)* + 77,
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and for & = [(n — 1)/(m — 1)], this inequality yields (4.4.2). Equality in
(4.4.3) holds if and only if

t for 0<t = 8 ,
l —«
L{#) = ot +8  for 8 <1128
1l —« a
1 for 1—_-l—3<t§1,
(24

sothat fora = [(n — 1)/(m — 1), =1 — & + Vala — (I — 2p), we
obtain the relative distribution function

¢ for 0<t=t,
-1 m—n 1
L) =
() m-—lt+m-—1+m—l
Vin—1)n—m)y1Q—2p) for t <t=Zt,
1 for Lt=1,
- where
—1 n—m
h=1—4/" — =1 — _
1 ,‘/n_m(l 2p), 1 1/7&_1(1 2p) .

4.5. THEOREM. Under the assumptions of Theorem 4.2, the variance of U has
the lower bounds

(U) = mn{ilm +n + 1 + 2v/(m — 1)(m — n)(1 — 2p)?]

(4.5.1) _
— 0~ p ' a0 - Pl i 2T Llsop,
@(U) 2 mn{dpV/2p(m — D(n — 1) — (m + n — 2)° + p(1 — p)}
452 _
52 , if 2p<2_11§91;,
(U) 2 mn{3lm +n+ 1+ 2v/(n — l‘)(n — m)(1 — 2p)f]
(4.53) . . e 1 _n—1
— [mp" +n(l — p)* + p(1 — P} if S m =1

These lower bounds can not be tmproved.

Proor. Inequality (4.5.1) follows from (2.4.2) and Lemma 4.3 with equality
attained for Ls(f), and (4.5.3) follows from (2.4.2) and Lemma 4.4 with equality
holding for Le(f). Inequality (4.5.2) is the same as (3.5.4) which was proven for
general relative c.d.f. L(#), without assuming (4.0.1) and which holds whether
m = norm > n since the right-hand side is symmetric in m, n. The lower bound
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(4.5.2) cannot be improved even under assumption (4.0.1) of stochastic compara-
bility, for L4(?) yields equality and satisfies (4.0.1).
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