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1. Summary. A point executes Brownian motion in a bounded, connected, and
open three dimensional region D. When it reaches the boundary I, at point e,
it is instantaneously returned to D according to probability measure u(a) (we
write u(a, A) for the measure of set A), and the Brownian motion is resumed.
This is a Markov process and, subject to certain regularity conditions on I' and
u(a), we derive the limiting distribution of the process. Processes of this sort
have been considered by Feller [1]; he has obtained the transition probabilities
of such processes. He is concerned more generally with Markov processes with
continuous sample functions on a linear interval; the return may be instan-
taneous or after a random period of time.

Let p°(¢, £, A) be the probability that the point is in set 4 of D at time ¢ when
it is initially at point £ of D, with the additional restriction that no boundary
contacts have been made. It is known that

) 20,56 4) = [ a,8,2) dx,

where dz is the volume element about « and u is the solution of the equation
TAu = u
2 ty

subject to the conditions

ult, £, @) =0, aeT, lim | u(t ¢ x) dx =1,

>0 J¢C

where C is any sphere of non-zero radius with center ¢ which is entirely within D.
We may write explicitly

0

ult,£,2) = 2 o(nale)e™",
where )\ is the kth eigenvalue and vx(x) the corresponding eigenfunction of the
equation Au + 2\u = 0 subject to the boundary condition u = 0 on T. If
K(¢, x) is the Green’s function of Au = 0 in D, then? ([2], and [3], page 273)

Received February 9, 1956; revised June 27, 1957.°

! Part of this paper was prepared under the sponsorship of the Office of Naval Research
and the Office of Ordnance Research, U.S. Army, at the University of California, Berkeley
and Los Angeles. Reproduction in whole or in part is permitted for any purpose of the
United States Government.

2T am indebted to Professors M. Kac and R. J. Duffin for some helpful discussions on
the relation of the fundamental solution of the heat equation to the Green’s function of

the Laplace equation.

267

)

: J&,

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%.VQR
The Annals of Mathematical Statistics. BINGRY

www.jstor.org



268 B. SHERMAN

2 K(t,2) = % f u(t, &, z) dt.
o
Let ¢(t, £, a) dt da be the probability the point is absorbed at surface element
da of T between ¢ and ¢ + dt when it is initially at point £ of D. Then ¢ is half

the interior normal derivative of u at point o of T'([3], page 273). When the point
is initially at £ the probability of ultimate absorption in set S of I' is given by

3) (£, S) = j‘; [ﬂ o, & o) dit da.

We may define a discrete parameter Markov process with T' as state space by
taking as transition probability

@) (e 8) = [l S)ula, )
“This Markov process has a limiting distribution = which satisfies the equation
®) w(S) = [ w(a, Sr(d).
We define a measure of sets of D by
MNA) = [ ula, A)r(da).

We may now write the density function for the limiting distribution. If
M (&) is the mean time of reaching the boundary when the point is initially at £,

M) = frjom (¢, £, @) dt der.

then the density function of the limiting distribution is

2 [ K (&, 9N ()

®)
[ m@nag

If we are given a probability measure X in D and the return is always according
to A, then it is clear that the limiting density of this process is also given by (6).
If X concentrates at a single point £ we may drop the integrals in (6), and in par-
ticular we get

M) =2 | K ) da.

We note that (6) is essentially the steady distribution of temperature in the
following problem: D is a homogeneous heat conducting body whose boundary
is kept at temperature 0 and in which there is a constant source of heat distributed

according to A.
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Regarding the regularity conditions, we shall assume that T is made up of
finitely many surfaces, each with a continuously turning tangent plane and
that D has a Green’s function ([4], page 262). We will assume there is a closed
'set B in D such that

in£ wle, B) = v > 0.

2. Origin of the problem. This problem had its origins in the ecological re-
search of Professor Thomas Park of the University of Chicago. He has been
investigating problems of population stability and inter-species competition of
flour beetles. It was discovered, on statistical investigations suggested in part
by Jerzy Neyman, that the distribution of the beetles in the container of flour
was not uniform, with the density increasing toward the boundaries of the con-
tainer. The problem arose as to whether the nonuniformity might be simply a
consequence of the random motion of the beetles or whether it ought to be at-
tributed to some inhomogeneity such as a temperature gradient in the flour.
To check the plausibility of the idea that the nonuniformity might arise from
random motion alone, we have set up a model which may have some relevance
to the actual situation. Thé region D represents the volume of flour. We assume
‘the independence of the motions of the beetles so that we may confine ourselves
to the random motion of a single point. This is a reasonable assumption if the
density of the beetles is low. For the random motion we take Brownian motion;
this is appropriate if we want path continuity and spatial homogeneity. Finally,
we must introduce some mechanism of return from the boundary; we use the
device of instantaneous return. If the return distribution is concentrated near
the point of contact on the boundary then the.device has some semblance of
plausibility. More precisely  we may suppose u(a, A(c)) = 1, where A(a) is
that set of points of D whose distance from « is less than or equal to 4, a small
positive number. Then if E is the subset of points of D whose distance from
T is in excess of 6 we have M(E) = 0. If we are prepared to accept the density of
distribution in E, as given by (6), as a theoretical model for what is observed
then we are faced with a contradiction. For the density is a harmonic function
in E, by virtue of A(E) = 0. Because of the minimum-maximum properties of
such functions we cannot have increasing density from the central parts of E
outward to the boundary of E since that would entail a minimum at an interior
point of E.

3. Derivation of the limiting distribution. We sketch a proof that we have
defined a process by the instantaneous return mechanism. This is equivalent
to proving that finitely many contacts occur in a finite time with probability 1.
By the assumption on g it will happen infinitely often with probability 1 that the
point is returned to B. Let T'(z) be the time to reach T, starting at x. If § is posi-
tive Prob (T'(z) > 8) is a continuous function of z which achieves a positive
minimum on B. Thus of the times the point is returned to B it will happen in-
finitely often with probability 1 that the time to reach T is in excess of 8. This
implies that infinitely many contacts in a finite time has probability 0.
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Let p(¢, x, A) be the transition probability of the process, i.e., the probability
the point is in 4 at time ¢ when it is initially at . Then we prove the limiting
distribution p exists and

(7) p@, =, 4) = p(4) + f(, z, A),
where
(8) 11, =, A)I < ae™,

Here a and k are positive and independent of z and 4. To simplify the notation
we will make the following convention: if f(x) is a function on D then we define
a corresponding function f(a) on I' by taking the integral, over D, of f with re-
spect to the measure u(a). With this convention we may replace x by « in (7)
and (8). We note that both f(¢, z, A) and f(¢, «, A) are integrable with respect to
¢ from 0 to .

Proceeding with the proof we use the fact that u(¢, £, x) is strictly positive
for all £ and & in D and for positive ¢. Then the minimum »(z, 8, #), achieved by
u(T, & x) subject to e Band t — 8 < T < ¢, is also strictly positive, and it
follows directly that fort — 6 < T =< ¢,

P(T, 0 4) 2 v [ (z,5,0) da.
A
It is clear that
8
h(s) = inf [r fo oL, 7, @) dt de

satisfies 0 < h(3) < 1for all 8 > 0. Let p'(¢, £, A) be the probability the point,
initially at £, is in 4 at time ¢ having made exactly one boundary contact. Then
ift >,

t
2664 = [ [ 66,6 @8 — .0 4) dr da
s
= fr ‘L‘ o(r, &, )p°(t — 7, a, A) dr da
s
= /; ‘[; o(r, &, ) dr da-y fA v(z, 8, t) dz

= h(8)y f; v(z, 8, t) dx.

We follow now the proof of a similar theorem given by Doob ([5], page 197).
If m(¢, A) and M(¢, A) are respectively the infimum and supremum of p(¢, ¢, A4)
as & varies over D, then M(f, A) = m(, A) and by the Chapman-Kolmogorov
equation it can be seen that M(#, A) is non-increasing and m(f, A) is non-de-
creasing. For fixed &, &, xo define the set function

'l’(A) = P(to ) & ) A) - P(to » Lo, A)
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There is a set A1 on which ¢ is maximum, such that ¢(4) = 0 for any subset A
of A*, and such that y(4) < 0 for any subset 4 of A~ = D — A*. We have,
assuming & such that 0 < § < 4,

‘l’(A+) 1- P(to ) 50 ] A~) - p(to » Lo, A+)
1 — Db, b0, A7) — P'(bo, 20, A7)

I\

<1 —h(&)'yf v(z,8,4) dx = ¢ < 1.
D

Following now a line of argument analogous to Doob’s we have
M@, A) — m(t, A) < 07,

from which it follows that M (¢, A) and m(¢, A) have a common limit p(4) and
that
Ip, 2, A) — p(4)| = M(t, 4) — m(t, 4) < /07

Thus (7) and (8) are established, with @ = ¢ and k = 1/ log ¢ .

Before deriving (6) we have to establish the existence of the limiting distribu-
tion = of the boundary process. To this end.we prove the lemma
9) = sup (max =(z, S) — min »(z, S)) < 1.

8eT zeB zeB
We note that =(z, S) is, for fixed S, a harmonic function of z([3], page 273).
If (9) is not true there will be a sequence of sets Sy such that
(10) max w(z,S;) — 1, min x(z, S;) — 0.
zeB zeB

Since n(x, S:) is a sequence of harmonic functions with 0 = #(z, Sx) < 1, we
may extract a subsequence which converge to a harmonic function f(z) uni-
formly on any compact subset of D([4], page 249). Without change of notation
we suppose this done. However (10) implies that f(x) achieves the values 1 and
0 on B, which contradicts the fact that f(z) is harmonic in D and 0 = f(z) < 1.

To prove the existence of the limiting distribution of the boundary process
‘we again follow the lines of Doob’s proof. For fixed @ and 8 we define the set
function

¥(8) = w(a, 8) — =(B, S).

Associated with y are the sets ST and S~, and we have

UE = 1= (ales ) -+ 705, 8)
1= ([ S nte o) + [ (e, 59003, 0))

<1 — v (min 7(z, 87) + min x(z, S*))

zeB zeB

I\

1 —~1 - max w(z, 8t) + min = (z, S7))
ze zeB

IIA

1=~ —9).
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If now we introduce m‘™(8) and M”(S), the infimum and supremum of the n
step transition probability =™ (e, S) as « ranges over T, then following Doob’s
proof

M™(8) — m™(8) £ 1 —~1Q — )",

from which it follows that the limiting distribution exists and satisfies (5).
We are now in position to derive (6). We have

¢
p(t; £ A) = po(t’ £ A4) + j; ‘/; ¢(7" £ a)p(t - Ta, 4) dr da.

Introducing (7) and integrating with respect to ¢ we get, after some reductions,
T T
[ e a=pw|1(i- [ [ 6650 dear)
0 b Jr

(11) T
+ [ [ oot @ dwar |+ 11,5, ),

where

(12 11,54 = [ ", 4) di — [ [ (e, &, St = r, e, 4) dr de .

The second term in the bracket on the right of (11) tends to M(£) as T — o,
and we show that the first term tends to 0. This term can be Wntten

(13) T Prob (z(2) e D,0 < ¢t = T|2(0) = &).

Let the coordinates of point z be z; , 2, 23 and suppose D is contained between
the planes 2, = @ and z; = —a. Then (13) tends to 0 if the expression

(14) T Prob (—a < :(¢) < a,0 <t = T|z(0) = &)
tends to 0. We may write (14) explicitly

(2n + r 2n + 1)2«27')
T nz.l (2n + Dr sin (& + a) exp (“'—w_* ’

which is less than

(18) T ,,22 @n ¥ Dn + 17 &P (‘W)’

and it is easily proved that (15) tends to 0. Letting 7' — « in (11) we get
(16) [ 26,6 4) dt = pOME) + I, &, 4).

Referring to (12) and (3) we may write, on introducing the variables ' =
and# =t — 7,
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I(w, £, A) = j:f(t, g A)dt — fr (fou° o(r', £, @) df') ([of(t’, a, A) dt’) da
- [bf(t, ¢ A) dt — fr < fo " it a, 4) dt) (¢, d).

The integration of the right side with respect to measure \ is equivalent to con-
secutive integrations with respect to u(8) and «. The first integration gives,
using (4),

fo " 4,8, 4) dt — fr ( fo " i, o, 4) dt) (8, da);

and the second, using (5), gives the value 0. Thus integrating on both sides of
(16) with respect to measure A we get ‘

f,, [ P'(€4) dtNdE) = p(4) f M(EN@9).

This equation, together with (1) and (2), implies that (6) is the density function
of the limiting distribution p.
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