SEQUENTIAL TESTS FOR VARIANCE RATIOS AND COMPONENTS
OF VARIANCE'

By ALLAN BIRNBAUM

Columbia Unaversity, New York, and Imperial College, London

1. Introduction and summary. A general sequential sampling method is given
for problems of comparing the variances of two or more normal populations in
terms of ratios of variances. Sequential tests are given for a hypothesis specifying
the ratio of two variances, including tests for variance components in the analysis
of variance (Model II). Such tests provide savings in average required numbers
of observations, relative to standard F tests, comparable to those typical of
sequential probability ratio tests.

2. Basic sequential sampling rule. Let z’ = (1,22, ),y = (i, ys, ")
be sequences of independent observations from two normal populations with un-
known means and unknown respective variances o> , o . Let
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forn =3,4, ---.Lety, ¥y, - - - besimilarly defined as functions of YL, Y, e
Then z = (x1, 22, --+), ¥ = (Y1, Y2, ---) are sequences of independent ob-

servations, normally distributed with zero means and respective variances

o2, op . (In case the original observations are from populations with known means

equal, say, to zero, z and y will denote the sequences of original observations.)
Let g be a given positive number, and let

u=(u1,u2,)=(gxf+gx§,gx§+gxf,) and
v = (1)1,1)2,"') = (yf-i—ygry?i“*_yi’)

Let
Ri=2u,~ and S,~=,Zv,~, for:=1,2,---
j=1 j=1
Let T = (T:, Ts, - -+ ) be a nondecreasing sequence whose elements are those

of {R;} u {8.}. Since events of the form R; = R;, S; = S;,7 # j,and R; = §;
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have total probability zero, we have with probability one that T is uniquely
determined,
T1 = mm (Rl, Sl),

min (Rz ) S1) if T, = Rl,
min (R;, S,) if T, = 8y, ete.

Given T, let B = (b1, ba, - - - ) be defined by

be = 1 if T; = some R;,
* 710 if T: = someS;, fori =1,2,---.

Tz =

The statistical decision procedures to be described below are based on observed
values b; only. :

A simple rule for sequential sampling of z;’s and y.’s so as to obtain the values
b; is the following

Sampling rule 1:

1. Observe u; and v; (that is, observe z;, 22, 1 and ¥, and compute u; =
g(xi + 23) and v = (41 + ).

2. If an additional observation 6, is required, then if u; < v, observe u, ;
if u; = v, observe vs .

3. Similarly at every stage, if an additional observation b; is required, then if
> u; < X v:, observe an additional u; , while if D u; = » v:, observe an
additional v; .

4. Discontinue sampling when the observations b, , - - - , b, thus far obtained
suffice to determine a decision according to the particular decision proce-
dure being used.

It is clear that to obtain m observations by, - - , bs , a total of m + 1 observa-
tions u; and v; are required; thus the above rule is most efficient for sampling
u;’s and v;’s to obtain b/’s.

A minor gain in efficiency here becomes possible if the sampling rule is described
in terms of z.’s and y.’s. This follows from the following observation: If only
Z1 , 2 , and ¥ have been observed, and are such that

w=g@l+23) <y <,

then u; < v; and by = 1 are known without need to observe y. . Similarly if
gzi > yi + v is observed, b; = 0 is known without need to observe z,. It is -
clear that the determination of b, in this way (that is, by observing whether
w < vy, without observing the exact numerical values of both u; and v,) does
not alter any mathematical or statistical properties of b, , since b, is defined in
terms of an inequality in u; and v; . Analogous observations hold at each stage

of sampling, and are the basis for the following

Basic sequential sampling rule:

1. Qbserve z; and ¥ .
2. If g1 < 4}, observe 2, ; if gz; = yi, observe y, .
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TABLE 1
Ezample of sampling rule (with g = 1) and computation of b,’s.
Observed values, in order of sampling
Sei -2y b; values
x’.’ yi
1. 27 = 4 =2 2
2. ys =1 1 by =0
3. i =3 -2
4. 73 =1 -1 by =1
5. 13 =3 2
6. yi=5 -3
7.2i =1 -2 by =1
8. 2t =3 1 by=0

3. Similarly at every stage, letting Y gz and > y: denote summations over
all observations thus far obtained, if Y ga} < > yi, observe an additional
x5 if D gai = D yi, observe an additional y; .

4. Discontinue sampling when the observations by , - - - by , thus far obtained
suffice to determine a decision according to the particular decision proce-
dure being used.

A convenient tabular method for carrying out the sampling and computing

the required b,’s is illustrated in Table 1, for the case g = 1 of the sampling rule.

The computation of b;’s may be described thus: As soon as 2r or more z.’s

have been observed and > gzi —> yi < 0 is observed, the r* unity value of
b; is observed. As soon as 2r or more y;’s have been observed and Y gx; —
ny = 0 is observed, the rth zero value of b; is observed. In applications where
population means are unknown, the relation

n . n+l , 1 n+1 , 2 n+1 , n+l1 , 2

22t =2, (xi -—————Zx;) = 2 (z)" — (Zx.)/(n-}- 1)

1 1 n+ 17 1 1
allows simple application of the method directly to the original observations.
It is readily verified that this rule minimizes the number of z;’s and %;’s which
must be observed to determine the required b,’s. Since this rule requires at least
(2m + 1) and at most (2m + 2) observations z; and y; , it affords a saving of at
most one such observation (and in terms of expected number of observations, a
saving of a fraction of one observation) as compared with the preceding rule.

Hence rule 1 may often be preferred because of its greater simplicity. How-

ever only the basic sampling rule will be considered in the following sections.

Clearly the sampling rule depends on the given value of g. Criteria for the

choice of ¢ are discussed below.

3. Distribution theory. % w;, % us, --- are independently distributed with
common density function

1w
f(w) =-—-§3 /0:’ w

z

v
=
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Similarly 3v1, 3ve, --- are independently distributed with common density
function
1 —wlv
h(w) = v, w = 0.
‘Tu

Hence (cf. [1] or [2])

(a) The sequences u and v are distributed as the ‘“‘waiting times” between
successive events in two independent Poisson processes with respective
parameters

1 1

AL = and A\ = —;.
! 205 ? 203

(b) If two such processes are observed simultaneously as one process, the
new process is Poisson with mean X = \; 4+ A; and waiting times T, , Ty —
Ty, Ts — Ty, - -+

(¢) b: = 1 (i.e. T; = some R;) denotes that the th event observed in the new
process occurred in the first of the two original processes.

(d) The b,’s are independent, with

A -1 0_2 -1
= Prob {b 1}-(1+—2) =(1+g—=§)
AL oy
for all 7.

Thus we may apply to B any sequential or nonsequential methods for statisti-
cal inferences concerning a binomial parameter p. By use of the relation ¢2/¢2 =
(1/¢9) 1/p — 1), any interval estimate of p provides an interval estimate of
o3/oy , and any procedure for testing a hypothesis on p provides a procedure
for testing a hypothesis on o%/¢ . An unbiased estimate of o2/03 is given by
(1/¢g) 1/p — 1), where 1/ is an unbiased estimate of 1/p based on inverse
binomial sampling of b.’s.

The generalization of the basic sampling rule and distribution theory to the
case of comparisons of three or more variances is immediate. In this generaliza-
tion, the distribution of b.;’s would be multinomial instead of binomial.

4. Efficiency. A number of questions concerning the efficiencies of tests based
on the above sampling rule are discussed in the following sections.

4a. Compansons Wlth standard F-tests. The standard method of testing a
hypothesis Hy : o2/02 = po, for any given p, > 0, is to take fixed numbers n, ,
n, of observations z; , y; respectively, and to use the statistic

P Stz 2l
Nz po Z:f-l yf
which under Hyhas the F-distribution with n,, n, degrees of freedom. Tables

8.3 and 8.4 of [3] give the operating characteristics of such tests. For example,
to test Ho :03/0y = .3404 against Hy:oZ/or = (.3404) = 2.938, with a =
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Type I error = .01 and 8 = Type II error = .01, a total of n, + n, = 40 ob-
servations suffices provided n, = n, = 20. If the above sampling rule is used,
taking ¢ = 1, then H, is equivalent to

Ho:p = Prob {b; = 1} = po = (1 + .3404)™! = 746
and H, is equivalent to H{:p = p1 = (1 + 2.938)"" = .254. By use of binomial

probability tables [4] we find Prob {3 3L b; = 11|p = .26} = Prob {3 %,
b; =10|p = .74} = .0088; thus a nonsequential test of H, against H; based

on 21 observations b; has
a = < .0088 < .01

The sampling rule requires either 43 or 44 observations z;, y; to generate 21
observations b;. Thus the efficiency of the standard F-test is approximately
matched by the nonsequential test based on b,’s in this case. (More exact com-
parisons of efficiency can be made, for example by computing the required exact
untabled binomial probabilities and using randomized binomial sample sizes,
but this does not seem necessary for present purposes.) Comparisons of this
kind are given for a number of other cases in Table 2 below. The properties of
the four F-tests are taken from [3], with n, = n, in each case, The approximately
matching non-sequential binomial tests are each based on the case ¢ = 1 of the
sampling rule; m is the required binomial sample size in each case. Since for m

TABLE 2

Standard .F-tests Approximately equivalent non- Value of

sequential binomial tests 2 2

- ne+ny, / %y

Value of o':/a-,z, Strength Value of p Strength = 2m |correspond-
ot ny m + 2 | ing exactly
Ho H, @ B H (I, H ; a B8 to Hy

Test 1 |.3404] 2.938] .01 .01 | 40 .73 .27 | .0119] .0119] 21 | 43.5| 2.704
.4707| 2.124] .05 .05 40 .67 .33 | .0520{ .0520{ 21 43.5 2.030
Test 2 1 |4.512] .05 .05 | 40 .5 .15 | .0318| .0537) 19 | 39.5 | 5.667
.5 .19 | .0835/ .0532] 19 | 39.5 | 4.263
.5 .18 | .0577) .0537) 20 | 41.5| 4.555
Test 3 1 | 2.866| .05 .05 | 80 .5 .26 | .0541] .0597] 39 | 79.5 | 2.846
1 2.866| .05 .05 80 .5 .25 | .0403| .0544] 40 81.5 3.000
1 1.693] .05 .50 | 80 .5 | .37 | .0541) .4850| 39 | 79.5| 1.703
1 1.693| .05 .50 | 80 .5 .36 | .0403] .4807) 40 | 81.5| 1.778
Test 4 1 | 4.470 .01 .01 | 80 .5 .17 | .0119] .0099] 39 | 79.5 | 4.882
4.470; .01 .01 80 .5 .17 | .0083] .0124| 40 81.5 4.882
3.579] .01 .05 80 .5 .21 | .0119| .0505 39 | 79.5| 3.762
3.579| .01 .05 | 80 .5 .20 | .0083| .0432] 40 | 81.5| 4.000
2.114] .01 .50 80 .5 .32 | .0019| .4889| 39 79.5 2.125
2.114] .01 .50 | 80 .5 .31 | .0083| .4777| 40 | 81.5| 2.226
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observations b; the sampling rule requires 2m + 1 or 2m + 2 observations z; , y; ,
2m +3/2 (= n, + n,) is given for each binomial test for comparison with the
nz + ny required by the corresponding F-test. In each case investigated, the
F-test is approximately matched in efficiency by a nonsequential binomial test
based on b,’s.

The F-tests are no doubt preferable to the nonsequential binomial tests, but
evidently simplicity of application is the only important basis for this preference.
Sequentlal probability ratio tests [5] are directly applicable to the b/s. Such
tests of Ho: P = po against H;: P = p1 > po require average sample sizes of
approximately m/2 or less when p < po and when p = p, . Thus by use of the
above sampling rule, with application of a sequential test to the b.’s, gains in
efficiency over the standard F-test are obtained. These gains can be calculated,
to close approximation, by use of the average-sample-size function for a sequen-
tial binomial test on b,’s corresponding to any given F-test.

Two-sided sequential tests on o3/c, based on the b;’s would require two-sided
sequential probability ratio tests on a binomial parameter. Such tests are not
yet available, but can be constructed by application of the method of sections
4.1.2 and 4.1.3 of [5].

4b. Choice of the scale-factor g. Each of the binomial tests considered in the
preceding sections was based on the particular case g = 1 of the basic sequential
sampling rule. The efficiencies of such binomial tests will in general be still
further increased by sultable choices of values of g. When a problem of testing
a variance ratio p = o3/} is specified by given values of po, p1, , and B, it is
natural to define a best value of g as follows: Cons1der the problem of testing
Hq: p = (1 + gpo)™" against H;: p = (1 + g ;)7 at strength a, 8. Let n(g) be
the binomial sample size required for a nonsequential test of strength (at least)
@, . Then a best value of ¢ may be defined as one which minimizes n(g). The
calculation of an optimal value of g, by use of binomial probability tables, is
elementary.

In the case & = B, symmetry considerations suggest that ¢ = (pop1)™* is a
best value; the same conclusion can be reached more formally by use of the
normal approximation to the binomial probability « = B. This case occurs in
some of the examples above: For example, to test Ho:p = .4707 against H 1ip =
(.4707)™" = 2.124 at strength « = 8 = .05, the binomial test based on g = 1
requires the (non-sequential) sample size m = 21. Taking the non-optimal value

= 21. 24 the corresponding binomial problem is one of testing Ho:p = .09
agalnst H;i: :p = .02 at strength « = 8 = .05, for which a (non-sequential) bi-
nomial sample size m = 50 is required.

If only po and p; are given, it is interesting to consider whether a value of g
exists which is best in the above sense simultaneously for all possible values of
(e, B). This is a problem in the “comparison of experiments” [6, pp. 334-6]:
For any po, p1 (p1 # po) and any two values g1, g, of g (g # ge), the “binomial
dichotomy” experiment E, , testing Hs": p = (1 4+ gipo)™ against H :p =
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(1 + g1p1)”", can be shown to be “not comparable with” the experiment Ej,
testing H®:p = (1 + gapo) ™ against H®:p = (1 + g:p1) . Tt follows that a
best value of g depends on the desired strength («, 8) as well as on po , p1 in any
particular testing problem.

While the value ¢ = 1 may not be optimal in those testing problems of Table 1
in which p; # pp" or a # B, it is evident that this value suffices to provide the
savings in expected numbers of observations pointed out in Section 4a above.

4c. Comparison with other sampling rules. It is of interest to compare the
above sampling rule with the one considered by Girshick in [7, pp. 134-6).
Girshick’s rule is: observe z; and y; ; if more observations are needed, observe
z2 and ¥, ; continue taking such pairs of observations (z;, ¥:) as long as required
to terminate a particular inference procedure. (For non-sequential F tests of
the hypothesis Ho:02/0} = po < 1 against Hy:o2/0s = po’, with a total of 2n
observations and equal Type I and Type II error rates, n. = n, = n are optimal
sample sizes. This case is formally the instance of Girshick’s sampling rule in
which the observation of exactly » pairs (x;, ¥:) is prescribed.) Girshick gave an
optimal sequential probability ratio test based on this sampling rule for deciding
which of the two variances o2 , o5 is the larger, and showed that the power func-
tions of such tests depend just on (1/02 — 1/¢2), a parameter which is not of
interest in most applications. This suggests that in order to obtain a test whose
power function depends just on the variance ratio (which is generally the param-
eter of interest), we must

(a) use Girshick’s sampling rule and apply a test other than Girshick’s, which

must then lack certain efficiency properties of the sequential probability
ratio test, or

(b) use some other sampling rule as a basis for a test.

Rushton [8] and Johnson [9] have given procedures which represent alterna-
tive (a). Johnson’s Procedure I is based on Girshick’s sampling rule and the
sequence of statistics
@ R D

v v+ iy

and consists of a sequential probability ratio test applied to. this sequence of
non-independent statistics. The average sample sizes required by this procedure
are not known. Johnson also gives some alternative procedures based on Gir-
shick’s sampling rule which are evidently less efficient but have approximately-
known average sample sizes.

Alternative (b) is represented by the sampling rule and tests of the preceding
sections.

This comparison of sampling rules illustrates a general problem of designing
sequential sampling rules which are appropriate and optimal for various problems
of testing composite hypotheses. Other illustrations are provided by various
procedures for comparing Poisson processes [2]. Some general methods for the
design of appropriate sampling rules will be given in another paper.
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The above sampling rule and tests illustrate a remark in [2, p. 257]:¢- - - prob-
lems dealing with variances of normal populations have direct analogues in
problems dealing with parameters of Poisson processes. - - - ”” The above methods
are analogues of Methods 1-3, pp. 261-2, in [2].

4d. Near-optimal properties. Consider the problem of testing Ho:o%/o)
= po against Hiioa/oy = p1, ;1 > po> 0, at a given significance level
a. Suppose that sequential sampling is conducted according to the above
basic sampling rule, with any given value of ¢ > 0, and any given termination
rule which with probability one leads to termination. Then, relative to the given
sampling and termination procedure (i.e. relative to the corresponding given
sample space), the present problem may be viewed as one of nonsequential
testing between two composite hypotheses, on the basis of a single (vector)
observation. The parameter space consists of points (p, r), where p = o2/
o), and 7 = o} .

Consider the simple hypothesis Hg : (s, 7) = (po, 7o), and the simple alterna-
tive HY : (p, ) = (p1, m1), where 71 = 7o (po(p1 + 1))/ (p1(po + 1)), and 7o has any
fixed positive value. By the Neyman-Pearson lemma, every best test of Hp
against HY has a critical region of the form

Wi = {(z,y) [ Mz, y) 2 k},
for some given k = 0, where

f(xly ctt Tnyy Y1, 0 yﬂyIHik)
f(xh 0 Tagy Y1y 0t yﬂuIH:)

Nz, y) =

is the ratio of likelihood functions. Such a test has significance level o* which,
when k is suitably chosen, equals the prescribed «. This test then has power
1 — B* under H which is the maximum attainable under the stated restrictions.

On the other hand, a best test of Hy against H{ based only on the observed
values of b;’s provided by the given sampling procedure has a rejection region
of the form

Wi = {(z,9) | N y) 2 k],

e 1 — m—27 bs
o= (7 (=)
(=, v) o T p

is the likelihood ratio of the observed b.’s, with
p; = Prob {b; = 1| HJ} = (1 + gp))7", Jj=0,1.

where

The purpose of the present section is to show, in a qualitative and heuristic
manner, that under appropriate restrictions

Prob (Wi | H}} = Prob {W;| Hf) forj = 0,1
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and any 7o, which implies the approximate optimality of a test based on b/s
only, for the given sequential sampling and termination rule. The following
discussion could be formulated more quantitatively, but this seems unnecessary
since
(a) the tests based on b;’s have simple and known properties,
(b) the operating characteristics of tests based on A(z, ¥) would apparently
be difficult to determine exactly and more difficult to apply than the test
on b,’s,
(¢) a qualitative indication of the approximate equivalence of the tests serves
practically as an additional recommendation for use of the tests based
on b,’s.
Now

(21rp11'1)—"’/2(21r1'1)~"”12 exp l: 2p171 Z x; — -17 Z yf]
“T1 1
1 2

(2mpo 1-0)__"’/2(21r‘ro)_"”/2 exp [ 20070 Z T — o7 55 yf]

Yo i

_ (po + 1\*" (Pl(Po + 1))""'2 [__( S 2)( po— p1 )]
B (Pl + 1) po(pr + 1) P 2 .123:‘ ny‘ Topo(p1 + 1)

Now the case g = 1 of the basic sampling rule is such that at every stage of
sampling the quantity (32} — Y y%) will be increased if it is negative and will
be decreased if it is positive; thus this quantity will under all hypotheses have a
distribution concentrated near the value zero, and the exponential factor of
A(z, y) will tend to have a value near unity. For cases ¢ # 1 of the sampling
rule, a change of scale in z; values, z; — \/gx; , before computation of A(z, )
gives the same result. We continue the discussion just for the case ¢ = 1.

Thus if the rule for termination of sampling is such that n, + 7, is not small,

> k|HY = po + 1>"”2 (m(po + D)""/z > ?}
Prob {A(z,y) = k| H;} Prob{(pl i o F D) = k| H;j

and the last quantity is independent of the ‘“nuisance parameter” 7o, forj = 0, 1.
From the definition of the b,’s we readily obtain

Az, y) =

T _ 1< 3 <M Bz _ S~ g, < T
G -lsSm—2bsy and 2 1s2bsg
Since
1 P
i = ) 1 —p; = )
P pi + 1 p i+ 1

for< = 0, 1, we have
o 1 — m—37 b,
(z,9) = ( =
( 0
P1

+ 1) (o £ DY
+1 PO(PI + 1) )
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Hence
Prob {A(z, %) > k| HF} = Prob {N(z, y) > k| H}},
forj = 0, 1, and for each value of the ‘“nuisance parameter” .

5. Sequential Tests on Components of Variance. The testing problems arising
in Model IT of the analysis of variance, and their usual non-sequential solution
based on F tests, are described, for example, by Mood in [10, Chapter 14). The
method of the preceding sections can be adapted to provide sequential tests for
such problems, as indicated below. Such sequential tests provide savings like
those described above in the required numbers of observations.

Consider the ‘“‘one-way layout’ problem in which

Yi; = p+ a; + e,
fore =1,2,---,7=1,2, ---.

Here u is an unknown constant, a; and e,; are normally distributed random vari-
ables with zero means and unknown respective variances o2 and oF, and all
a’s and e;;’s are mutually independent. The statistical problem is to test a
hypothesis specifying the value of p = o / % . For present purposes we consider
that a doubly infinite array of the random variables y;; is available, and that we
are free to take observations y,; throughout this array in any manner. Let

(1 1
Yz 3 0 0
1 1 2

T=@)=|v/238 V23 ~+23 0

denote the unique ‘“doubly infinite orthogonal matrix” characterized as indi-
cated, i.e., by the requirements that ¢;; = 0if j = 7 + 2, that £; > 0, and that
> miti; = 0, for all 4, j. Let the random variables (ry, 72, - - - ) be defined by

(ri,re, -2 ) = T(yu, Yy, -+ ):

e, ra = D gt tasnj,fora = 1,2, --- . Let therandom variables (s;, sz, - - - )
be defined by

(51,8, ) =TWu,ya, -+ );

i€, Sa = D st tasisrn fora = 1,2, --- . Then all 7.’s and s,’s have independ-
ent normal distributions with zero means; and Var (r,) = o2 = o, Var (s,) =
o = 0'?, + ok

The sequential test procedures given above can be applied directly to the
sequences of r,’s and s,’s to test any hypothesis on p = o3 / o7, say Hoip = po
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against Hiip = p1 > po, at specified size and power. But since

2 2 2 2

_ 0s o, + o3 1 Oa
p=—5=—7F—= +—E’
oy a. ae

H, is equivalent to HS" :03/0s = po — 1, and H, is equivalent to Hf : o2/02 =
p1 — 1. (Here po = 1isrequired if Hy' is to be meaningful.) Thus the usual hypoth-
eses of interest in terms of variance components, namely those specifying a
positive value for o5/ = po — 1, and those specifying o = 0 (and hence po = 1),
can be tested sequentially with gains in efficiency as described above.
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