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SOME BOUNDS ON THE DISTRIBUTION FUNCTIONS OF THE
LARGEST AND SMALLEST ROOTS OF NORMAL
DETERMINANTAL EQUATIONS!
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While the joint density function of the roots of certain determinantal equations
have been obtained, [1], [2], [3], the result is sufficiently complex that the mar-
ginal distribution functions of these statistics have not, to the author’s knowl-
edge, been tabulated. We present here a lower bound on the distribution func-
tion of the smallest root and an upper bound on the distribution function of the
largest root.

These bounds may be of possible usefulness in problems of significance tests
since observed values that are not ‘“‘significant” according to the bounds will
certainly not be “significant” with respect to the exact distribution.

Let Sijand S8%;,4,j=1,---,k be two sample covariance matrices from
normal distributions having identical covariance matrices. It is well known [4]
that the smallest and largest roots, say W, and W, , of the equation

1S3 — WS =0
satisfy the inequalities
1
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Let F; = Si;/ 8% . It then follows that
Wi < min {F,}; Wi 2 max {F}.

Since the roots are invariant under linear transformations of the underlying
variables, the covariance matrix may be taken to be the identity matrix. Then
the F'; are independently and identically distributed according to the well known

F distribution. Denote by Fp;; and Fy the smallest and the largest of a set of k
independently identically distributed F values. We then have the desired bounds.

P{W, s u} 2z P{Fyy < u}
P{Wk g 1)} ; P{F[k] ; 1)}.

Denote by G(F) the distribution function of F (which depends, of course, on
the numbers of degrees of freedom for S}; and S%;). The above bounds become

PWisu}z1—[1 -G
P{W. 2 v} 21— [GO).
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NOTE ON A MOVING SINGLE SERVER PROBLEM!

By S. KaruiN, R. G. MiLLER, JR., AND N. U. PraBHU

Stanford University and Karnatak University

1. Introduction and summary. B. McMillan and J. Riordan in [1] derived
the generating function for the probability distribution of the number of items
completed before absorption in a moving single server problem in two special
cases. Through an analogy to the work of L. Takédcs [2] on busy period prob-
lems for a simple queue, McMillan and Riordan postulated a nonlinear integral
equation relation for the generating function. In this note the validity of this
relation is proved in general by exploiting the analogy more fully, and the
generating function in the two special cases is obtained directly from the in-
tegral equation. A similar functional relation is established for the Laplace-
Stieltjes transform of the distribution of time until absorption, and the trans-
form is obtained for the two special cases.

2. Functional relations. As stated by McMillan and Riordan the moving
single server problem is the following: an assembly line moving with uniform
speed has items for service spaced along it. The single server available moves
with the line while serving and against it with infinite velocity while transferring
service to the next item in line. The line has a barrier in which the server may be
said to be “absorbed’ in the sense that service is disabled if the server moves
into the barrier. The server with exponentially () distributed service time starts
service on the first item when it is T time units away from the barrier. Let the
spacings between items be independent random variables with the general dis-
tribution function B().

This problem is analogous to a simple queue with a single server, Poisson ar-
rivals (\ = a), and distribution of service times Fg(t) = B(t). The time until
absorption in the moving single server problem is equivalent to the length of a
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