A PROPERTY OF THE MULTINOMIAL DISTRIBUTION

By Harry KESTEN! AND NORMAN MORSE?
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1. Introduction. The purpose of this paper is to prove a property of the
multinomial distribution which is fundamental to the choice of sample size for
the selection procedure described in the preceding paper [1] of this issue. As in
[1], we let ppy < p = -+ = pw denote the ranked multinomial probabilities
and let ¢x = ¢(py, - - , Ppy) be the probability of a correct selection when the
selection procedure in section 4 of [1] is used. We wish to prove that for any
integers N = 1, k = 2 and for any number 1 < §* < o, ¢; is minimized among
all configurations with pg; = 6* pig (z = 1, ---, k — 1) by the configuration
Py = P@ = *** = Pp- = pw/0* = 1/(6* + k — 1). This configuration is
called “least favorable” because of this property.

The theorem on least favorable configurations, proved below in section 3,
merely assembles the results of the preceding lemmas in a rather obvious way.
The main ideas of the result are contained in the two lemmas of section 2. Note
that Lemma 1, proved below for £ = 3, is not needed to prove the theorem for
the case k = 2.

We should like to thank Dr. Milton Sobel for his valuable comments and
suggestions.

2. The lemmas. It was found convenient to deviate in the following respect
from the notation used in [1]. Let px denote the largest of the k probabilities, but
let the other (k — 1) probabilities p;, - - - , px—1 be unranked among themselves.
Let E; be the event associated with p; (z = 1, - - , k), and let y;x be the number
of occurrences of event E; after N observations (i = 1, ---, k); of course we
have 0 < yow S N (¢ = 1,---, k) and D_;% ysv = N. (For notational con-
venience we use the same symbol for a chance variable and its observed value.)
In correspondence to the notation just given, the probability ¢ of correctly
choosing event Ej is in this paper a function of the p,’s as defined above rather
than a function of the p;’s as it is in [1]. It is sufficient to restrict our attention
to configurations with p, = 6* max (p1, -+, Pr—y).

Suppose k¥ = 3 and any k — 2 of the p.’s including pi , are held fixed. For
notational convenience, we take the two unfixed probabilities to be p; and p, ,
and we arbitrarily call p; the one which is equal to or greater than the other, so
that we have p; = p,. Note that since the sum (p, + p,) is fixed, ¢; can be
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regarded as a function of p; only, say ¢i(pi), with (p1+ p2)/2 = ¢ =
(01 + po).

Lemma 1. Let k = 3, and let (p1 + p2), P3, ~- - , Dr be fized as above. Then
¥1(p1) 78 a non-increasing function of p1 , where p; lies in the interval (p; + p2)/2 <
P = (p1 + p2). [Hence ¢, is minimized over all vectors with fixed ps, --- , Px

and such that p; = 6* max (p1, -+ - , Pr—) by taking py = min (p; + P2, pr/6%).]
Proor or LEMMA 1. ¢ can be rewritten
1 NI um . VN
& S T L R
YN
> (wN) (1 — 1)*"S(yaw , Yav » Yaw)
vin=wy—vin \YIN
where wy = yiv + yov, ¢ = (p1 + p2), ¥ = p1/q; the outer summation is over
all (k — 1)-vectors (wwy, Yav, -, ¥snx) Such that wy + E’.’.a yix = N and
v =Yin(t=3,--- ,k—1);(s — 1)isthenumberof yix’s (¢ =3, --- , k — 1)

which equal yxw ; and S(ywv , Yaw , Yin) is defined as follows: -

=1 if max (yuv , yov) < Wi
(2) Sy, yaw, yun) = 8/(s + 1) if max (ywv , Yov) = yiw and Yov # Yan
8/(s+ 2) if yw = Yaw = Yo

The inner summation in (1) insures that yiy = yiv for ¢ = 1, 2. Note that s is
actually a function of (ysv, - - , ¥xn).

To prove Lemma 1 it is sufficient to prove the monotonicity property for the
inside sum in (1) with wy and yi» fixed, for then ¢, will be termwise monotonie.
Using (2), it is easy to see that for wy and yix fixed the inside sum in (1) is equal
to either

Pr {wy — van < v < Yin} + —— Pr {paww = wy — Yin}

+
(3

+s+1Pr{ym Yan}
for the case wy < 2yiwn , OT

(4) Pr { Yivn = Yov = ym}

s+2

for the case wy = 2yiv. Since the inner sum is empty for wy > 2y~ , DO
other cases have to be considered.
Now for wy < 2a, define the function

(5a) fla;r) = Z ___wwl (1 — )",

Zm0 N~ xl(w x) !

which we rewrite as the difference of incomplete Beta functions:
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. = WN a — wy—a—1 __ wN—a--l — a
6 a0 = g2l [N - ) (t - 97 d.
For the case wy > 2a, we take f(a; r) to be zero. (Also individual terms in (5a)
are zero if ¢ < 0 or z > wy .) The proof of Lemma 1 can now be completed by
noting that expression (3) equals

(6) s F lf(?llm -1+ H—Llf(yk"; r),
and that expression (4) equals
@) s F 2f(ykN, r).

Since the integrand in (5b) is non-negative for the case wy < 2a + 1 and § <
r £ 1, it follows that f(a; r) is a non-increasing function of ». The expressions
(6) and (7) are therefore non-increasing functions of r, and this proves the lemma.

Starting with any configuration for which px = 6*p; ¢ =1, -+, k — 1),
one can, by repeated application of Lemma, 1 arrive at a new configuration which
has (k — g) of the p; equal to zero, (g — 2) of the p; equal to p./6*, and the one
remaining p; in the closed interval [0, p./6*]. Moreover, the probability of a
correct selection for this configuration is at most as large as that for the original
configuration. The purpose of the second lemma is to permit further reduction
of the probability of a correct selection by starting with this new configuration
and making changes of a second type.

To be more precise, we assume that

o*(1 —
Pe=0"pa = o0 = 0¥ Prpgia = o('* + gpkj;l)
8 .
® 0 = Prgs1 S Digiz = DPi/6*
p"—ﬂ = ecee == pl -

where gis an integer2 < g < k,6* > 1,p, 2 0@ =1, --- ,k),and D _smy p; = 1.
Note that under these conditions 0 < px—g1 < 1/(6* + g — 1). Let pr_ypa = p
to simplify notation. It follows from (8) that ¢, may beregarded asa function of
p only, say ¥(p).

LemMa 2. Under the conditions (8), yo(p) is a non-increasing function of p,
where p lies in the interval 0 < p < 1/(6* + g — 1). [Hence ¢ is minimized under
(8) by the configuration p1 = -+ = prg = 0, Progi1 = Phgyz = *** = Ppy =
pe/60* = 1/(6*+ g — 1).]

Proor or LEMMA 2. Consider a multinomial problem in which only the g — 1
events Ey_g42, -+, Ex are involved; suppose the probabilities of these events
are given by 1/(6* + g — 2), ---, 1/(6* + g — 2), 6*/(6* + g — 2), respec-
tively. Let M observations be taken, and consider the quantities yi_gi2,x ,

-, Yru . But now let an integer 0 < ¢ < N be given which is to correspond to
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the event Ex_,41, and use the selection procedure of [1] to choose among the g
events Ex_y41, - - - , Ei . That is, the constant ¢ plays the same role in the selec-
tion procedure that the chance quantity yx—s+1,2 ordinarily would; otherwise the
selection is made in the usual way. Let Qu(c) be the probability of choosing
event E; when this procedure is used.
¢r can now be rewritten as
N

9) o = ¥a(p) = VZ_; (]Z) A — D" Qv ().

Note that Qx_,(y) is independent of p, so that y2(p) is merely a linear combina-
tion of binomial terms. One may rewrite (9) as

A0 W) = 3 [0es@) = Qe — 01 2 () 70 - 2"

where we set Qu41(— 1) = 0. Since Y mey (M)P™(1 — p)"~ ™ increases with p for
all 0 < y < N (i.e., the binomial distribution shifts to the right if the prob-
ability of a “success” increases), it clearly suffices for proving the lemma to
show that Qx—,(y) is non-increasing in y.

From the definition of Qx(c), it is clear that

(11) QN—y—l(y + 1) é QN—'u—l(y)-

In order to prove Qy_,—1(y + 1) =< Qn—y(y), therefore, one needs only the in-
equality Qv_y—1(y) < Qwv—(y). Hence it is sufficient for proving the lemma to

prove the following

Assertion. Let 0 < ¢ < N be given; then
(12) Qu(c) = Qunalc)
for all integers M.

To prove the assertion, note that @Qx(c) is the probability that E: is chosen
after M observations; and that if an (M 4+ 1)st observation were taken, the vector
(Yr—g4+2.241 , * * * » Yx, u+1) could lead to any one of g possible decisions. Likewise,
Qu41(c) is the probability under the same selection procedure that Ej is chosen
after (M + 1) observations, and this event might have arisen from any of a
number of sequences, some of which would have led to Ey , some of which would
have led to Ei_, ---, some of which would haved led to Ey—,41, had the
selection been made after the Mth observation. In short, for fixed ¢, let R(z, j) =
Pr {choose E; after M observations and choose E; after (M + 1) observations},
wheres,j =k — g+ 1, .-+, k. Then we have

k

QM+1(C) = Z 1 R(j7 k)r

J=k—g-

(13) :
Qulc) = 2 . R(k, 3);

j=k—g+
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also

k

(14) Qua(e) — Quele) = 2, " (B(j, k) — R(k, /).

Jemk—g-

Thus it suffices for proving Lemma 2 to show that each of the terms
R(j, k) — R(k,5) 2 0 G=k—g+1,---,k—1).

In the following, the subscript M is dropped from the cumulative sums y;x;
it is understood that the symbols y; (1 = k — g + 1, - - - , k) stand for cumulative
sums after M observations. Write m = max (¢, yi_gs2, -+ , ¥). m is said to
occur s times if exactly s of the numbers ¢, yx—g42, - - * , ¥ are equal to m and the
other y’s are less than m. The detailed expressions below for R(j, k) and R(k, j)
apply only forj = k — g + 2, --- , k — 1. It is, of course, necessary to show
Rk — g+ 1,k) — R(k, k — g + 1) = 0 as well, however we do not write out
the expressions here. The argument for this case is much the same as is set out
below for the other j, and is in fact somewhat simpler. In the selection procedure
which defines Qu41(c), the only way one can choose Ei_,4; after having chosen
E; on the previous observation is through the randomization process. Thus the
last two parts of R(k, k — g + 1) become zero. This also has the effect of strength-
ening the desired inequality.

One has, then, forj =k — g+ 2,.-- ,k — 1,

g
R(j, k) = Z[;—,Pr {ys = y» = m ;m occurs s times;y; < m — 1 for

aml

Ys #% m; E; occurs at the (M + 1)st observation, for
some ¢ such that y; > m}

+ Rs%-ﬁ Pr {y; = y» = m;m occurs s times; g5, = --- = y;,
=m—-1ys<m-—1ify; < m—1and
(15) 15 11, %y ; Eg occurs at the (M + 1)st observa-
tion for some h =1, - - - , u}

+ E(s_-lk-—l_) Pr {y; = m = yx + 1; m occurs s times; E; occurs
at the (M + 1)st observation}

+ % Pr {y; = y» = m;m occurs s times; E) occurs at the

(M + 1)st observation}]



MULTINOMIAL DISTRIBUTION 125
Similarly,

[
Rk, 7)) =2 [%Pr {yi = yr = m;m occurs s times; y; < m — 1 for

o=l
y: ¥ m; E; occurs at the (M 4 1)st observation, for
some ¢ such that y; # m}

1
s(s+ 1)

=m—1;5:.<m—1ify; S m—1and
17 1, ,1, ; Bi, occurs at the (M + 1)st observa-

+

Pr {y; = y» = m;m occurs 8 times; y;, = -+ = y;,

(16)
tion for some h =1, -+ ,u }

+

1 .
s(s+1) Pr {ye = m = y; + 1; m occurs s times; E; occurs

at theé (M + 1) observation}

+ % Pr {y; = yx = m;m occurs s times; E; occurs at the

(M + 1)st observation} ]

Each of the probabilities R(j, k) and R(k, j) has been divided into four parts, and
the parts are now considered in turn. The first two parts of (15) are identical with
the first two parts of (16), hence these parts contribute nothing to R(j, k) —
R(k, 7). As for the third parts, a typical term from the third part of (15) may be
written

7

1 M! m—1_M—m+1

0* . A%
sE+ 1) M) m— 1) 1ys ! Yi,u €)™ p
where p; = 1/(6* + g — 2). Similarly a corresponding term from the third part
of (16) may be found merely by switching the role of k¥ and j; this term may be
written

m_M—m

1 M! *n) .
SEF 1) m)m — Dlys - gs,at PV PP
which is equal to (17). Since the terms in the third parts of (15) and (16) can be
put into one-one correspondence, with the corresponding terms being equal, the
third parts contribute nothing to B(j, k) — R(k, 5). One only has to consider the
fourth parts of (15) and (16) therefore.

A typical term from the fourth part of (15) may be written

1 M! M
- 9* m, L o*
8 (m!).yil !’ ety Yig—s ! ( pl) n P

(18)

(19)
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while the corresponding term from the fourth part of (16) may be written
1 M!
$ m!)‘yj, !, e ,yi,_, .

Expression (19) is at least as large as expression (20), since §* > 1. Thus the
fourth part of (15) is at least as large as the fourth part of (16) and we have
R(j, k) — R(k,j) = 0. The lemma then follows.

3. Proof of the property of the least favorable conﬁguration.

(20) (0*p)"pr " -

THEOREM. Let 1 < 6* < o be given, and suppose px = 0*p; (i = <o, k—1).
Then
1 1 0*
cos > — e
(21) ¢(p1’ )pk)=¢(o*+k__1’ 70*+k_1)0*+k__1)‘
Proor oF THEOREM. Let a vector of probabilities (p:, - - - , px) be given which
satisfies the hypotheses By applying Lemma 1 repeatedly, one can produce a
configuration (p;, - - - , pr) such that ¢(p1, -+, pr) < &(p1, -+~ , ), and
which has the following properties:
(a) Pr =D
©2) (b) pi = pu/0* for h — 2 of the p;
(c) pi =0 for k& — h of the p;
(d) 0 =< pi = p/0* for the one remaining pf

where hisaninteger2 < h < k. If p; = pr/6* for the 7 in (d) of (22), then the
p. can be renumbered so that the configuration is in the form of (24), and we can
proceed immediately to apply Lemma 2 with ¢ = h 4 1. If, that pi < pi/ o*,
however, we can without loss of generality, renumber the p; for (: < k) and
rewrite (22) as follows:

/7

(a) P = Di

(b) P = Pé—z = oo = Pinge = pi/O*
(23) k

(0) Pan=1=2  pi<p/*

tmk—h+2
(d) Pih = Dih1 = -+ = p1 = 0.
One can now apply Lemma 2 to the p; by subst.ltutmg h for the g of that

lemma. The result is a new configuration (p; , - - - , pr ) which yields a,probablhty
of correct selection at most as large as the one corresponding to (p;, - -, p,,),

and which has

(24) (a) Pk = 0Pk = - = 0*Dt_ap
(b) I)Z—h=l’l:,—h-1="'=p{l=0-
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Another application of Lemma 2, with ¢ = h + 1, to this new configuration will
yield still another configuration whose probability of correct selection is again
not larger than the one corresponding to (p1 , - - - , px), and for which property
(24) holds with % replaced by & -+ 1.

Repeated applications of Lemma 2 lead to a configuration where (24) holds
with A = k, and this configuration certainly yields ¢ < ¢(p1, - - - , i) since the
probability of correct selection did not increase at each step. But (24) with
h = k is the configuration whose probability of correct selection is given in the
right side of (21). Hence the theorem is proved.
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