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1. Introduction and summary. One of the unpleasant facts about statistical
decision problems is that they are generally much too big or too difficult to admit
of practical solutions, a fact that is threatening to widen even further the gap
between the theory and application of this brave new discipline. Briefly, the
situation is this. For each possible decision procedure ¢, the statistician is con-
cerned only with the values p(w, ¢) of the risk function as w ranges over the set
Q of all possible states of nature, so that a choice of a decision procedure amounts
to a choice of a risk function. The obvious difficulty of comparing functions in
the search for a best procedure now arises, constituting a major problem for the
statistician. The Bayes and minimax principles, it should be noted, represent
but two extremes to which the statistician can go to get around this difficulty
rather than to meet it, the one assuming complete knowledge of an a priori
probability distribution A of the possible states , the other assuming least favor-
able circumstances about w, so that in either case one considers only a single
number per procedure rather than the entire function—the Bayesian the average
risk with respect to A, the minimax-man in all timidity the supremum of the
risk function—comparisons thus becoming trivial in principle and obliging one
to look simply for that procedure which minimizes these numbers. Inasmuch as
the situations occurring in practice with regard to prior knowledge about w
usually lie between the two extremes just described, to this extent at least both
principles are open to criticism. In view of the nature of the difficulty in choosing
among procedures, the notion of admissible or complete classes of strategies is
generally felt to provide the most satisfactory solution. Whereas it may be
difficult to say what to do in a statistical decision problem, it is generally easier
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2 OSCAR WESLER

to say what not to do, so that the statistician separates out from consideration
all inadmissible strategies and presents the practical man with what is at best
a minimal essentially complete class of procedures. The choice of one from among
these admissible procedures is then left to the best judgment, intuition, and past
experience of the practical man. If the class is a small one, we have then achieved
everything one can ask for, for the actual choice will then easily be made. The
difficulty, however, is that the classes are usually much too big to be of real help.

The trouble, in a word, lies in the fact that it is the space Q itself of possible
states that is generally too big: one simply cannot look at and assess all the values
of w for each decision function ¢. Now when problems turn out to be too big for
practical purposes, it is natural to look for ways of cutting them down to size
by methods of simplification or approximation in which very little of the original
problem is lost. It is precisely such a cutting down or slicing up of the problem
that we propose to treat in this paper, in the hope that it may help bring the
theory and practice of statistical decision functions somewhat closer together.

The Modified Minimax Principle. The minimax principle, which looks only
at the single value sup.p(w, ¢), suffers from the defect of being an over-simplifica-
tion. Yet it suggests, by means of a simple modification, a natural way of ap-
proximating to the problem. This is to cut @ up, to partition it into sets or “‘slices”
Q, , 8 running over an index set S, and then look at supuc,p(w, ¢) = a(s, ¢) for
each sin 8, so that corresponding to the partition @ = U,.sQ, we look only at the
values a(s, ¢) for s ¢ S instead of at p(w, ¢) for all w. The range of p, is thus re-
placed by the smaller range of «, , making comparisons of procedures that much
easier. It is this slicing up of @ (or its replacement by the smaller class S) and
consequent simplification of the risk functions in the above way that we call
the modified minimax principle. (By way of analogy, one might think of upper
Darboux sums approximating Riemann integrals.) The reduced game can then
be treated as any other game: one can play Bayes or minimax in it, or attempt to
delineate its admissible strategies.

If the “slicing principle” used is such that the supremum of p, over each slice
is not much different from the values within the slice, or has some other reason-
able property, then very little is lost. The question of what are reasonable or
natural slicing principles is clearly of primary importance here, and we shall
present what we believe are several of them.

The theory of tnvariance provides us with the most powerful of these slicing
priniciples and will play a central role in our considerations. The natural slicing
of @ into its orbits under the group leads us to what appears to be the best pos-
sible generalization of the Hunt-Stein theorem, and to its most natural setting:
namely to the theorem that under certain regularity conditions which are often
met in practice the invariant procedures form a complete class in the sense of the
sliced up risk functions. The theory of composite hypotheses is also discussed
in this light, and an example of theoretical interest is given illustrating these
concepts, in which a difficult problem undergoes a striking simplification.

Finally, the use of previous experience as a slicing principle is discussed, and
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related to a purely game-theoretic model which we have constructed for the
modified minimax principle and which we have called a mized game.

Though these slicing principles appear to be among the most important, the
search for others continues. A method of approximation and simplification having
been established, it remains to be seen whether these principles and available
numerical methods can be combined to make an effective instrument in practice.

2. The use of invariance as a slicing principle. We begin with a brief descrip-
tion of the statistical and group-theoretic setup. Background material and
further remarks on statistical games can be found in Blackwell and Girshick
[1] and Wald [2]. For measure-theoretic and related notions, we refer to Halmos
[3]. The formidability of notation, while unavoidable in this subject, is more
apparent than real, and we shall try to clarify matters with a running com-
mentary.

DerINITION 1. By a statistical problem (Z, ®, ©, P, A, @, L) is meant

i) A set Z of all possible experimental outcomes, a Borel field ® of subsets of
Z, a set @ of states of nature, and a function P defined on & X @ such that for
each w £ Q, P, is a probability measure on (Z, ®). (Z, ®, 2, P) is called the sample
space

ii) A set of actions A available to the statistician, together with a Borel field
@ of subsets of A

iii) A loss function L defined on @ X A such that L(w, a) is the loss to the
statistician when he takes action a and w is the true state of nature. For each
w e, L, is assumed to be a non-negative @-measurable function. (A mapping
f:M — N of one measurable space (M, 9m) into another (N, 9) is said to be
91-9% measurable if the inverse image of every 9t-set is an IM-set. If (N, IN) is
Euclidean, with the usual Borel sets, we call the mapping simply 9-measurable.
If E is a subset of M, we shall write f”E for the image of E under f.)

DEFINITION 2. (G, vz , ¥a , Y4) is said t0 be an admissible group on the statisti-
cal problem, or the problem is said to be invariant under the group G (for short) if

i) g is a group

ii) ¥z is a homomorphism of G into the class of all ®-® measurable 1-1 trans-
formations of Z onto itself, yg is a homomorphism of G into the class of all 1-1
transformations of © onto itself, v, is a homomorphism of G into the class of all
@-@ measurable 1-1 transformations of A onto itself, where for each g ¢ G we
shall write gz for vz(g), ga for va(g), and g4 for v(g)

iii) for each g £G, B ¢ ®, w £ 2, we have P(g7 B | ga(w)) = P(B|w) and

iv) for each g £ G, w £ R, a ¢ A, we have L(ga(w), ga(a)) = L(w, a).

What this definition says is that each element g of group § is in effect three
simultaneous permutations or relabelings, gz, ga, and g4, of the elements of
Z, Q, and A, respectively, together with their respective Borel fields, under which
proba,blhtles of sets and losses due to actions are invariant. The homomorphisms
further imply that we have three groups Gz, Ga s and G, of such permutations.

As a simple example illustrating these concepts, we may think of the following:
Let Z be the real line, ® the ordinary Borel sets, @ the real line, P, the normal
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distribution with mean » and variance 1, A = Z, @ = ®, and L(w, a) = (v — a),
i.e., the loss is some function depending only on the difference w — a. The problem
is easily seen to be invariant under the full translation group G each element of
which gives rise to three identical translations of the three real lines Z, 2, A by.
the same real number. The reader may generalize this example at once to the
n-dimensional case, with P, the multivariate normal distribution N (w, I), vector
w = (w, -, w,) of means, covariance matrix I, and translations z —z + g =
(Zl+ g, - ,Zn+ g)'

DEerFINITION 3. A randomized decision procedure is a function ¢ on @ X Z
to the unit interval of reals [0, 1] such that for each z, ¢, is a probability measure
on (4, @), i.e., (T | z) is the probability of taking an action in T ¢ @, given 2,
and such that for fixed T, ¢r is a B-measurable function of z. We write & for the
class of all randomized decision functions.

DeriNITION 4. For any state of nature w and decision procedure ¢, the value
of the risk function p is given by

oo, ) = [ [ L, 0) dola] 2) aP.(a).

DErFiniTION 5. For each g £ G, we make correspond to each procedure ¢ a new
procedure gep given by

(920)(T | 2) = o(gaT | g2(2)).

It is an easy but very important consequence of our definitions that the risk
function p is invariant, or as we say, transforms ‘““correctly,” under the group by
means of the formula

p(w, gow) = p(ga(w), ¢) for every g € G.

The simple verification of this is as follows:

o, 900 = [ [ Lo, @) delga(@ 1 :(2)) dP(e | o).

Writing L(w, a) = L(ga(w), ga(a)) and dP(z | w) = dP(gz(2) | ga(w)), then re-
labeling g,z = 2’ and g.(a) = a’, we get

[ [ Eaata), @) deta’) ) P | ol

I

p(ga(w), @).

DEerinITION 6. A decision procedure ¢ is said to be invariant under the group
if gsp = ¢ for every g €G, i.e., if
o(gaT [ 92(2) = (T | 2) for all g, 2, T.

Note, then, that if ¢ is invariant, p(w, ¢) = p(ga(w), ¢) for every g € G.
A brief word at this point on the effect in general of an arbitrary group of per-
mutations on an arbitrary set will give some direction to these considerations
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and will enable us to convey the essence and spirit of what is known as the in-
variance principle.

Let G be a group of permutations of the elements of a set X. The existence of
a permutation sending one element of X into another is readily seen to establish
an equivalence relation in X and gives rise to a useful partition of X into equiva-
lence classes, known as “orbits,” under the group. Formally, given z ¢ X, the
orbit V. to which it belongs is the set of elements y of X given by

V. = {y:y = gz for at least one g £ G}.

Now so far as the effect of G in its bearing on X is concerned, there is no dis-
tinguishing between elements of the same orbit. Taking an anthropomorph..
view of the group, from the point of view of ‘‘the man in the group,” all elements
in an orbit look alike, the group in its dealings with the set displaying blindness
to a mere matter of a difference in labels. To put it another way, when the man
in the group looks at X, he sees only orbits.

The invariance principle. Returning to our statistical setup, the space Z of
experimental outcomes breaks up into orbits under the influence of G, more
specifically under the permutation group Gz . 2 also breaks up into orbits under
Ga . By the invariance principle is meant the adoption by the statistician of the
viewpoint of the man in the group G: he becomes himself the man in the group
in that he too sees the problem in terms of orbits only. Specifically, this means
that the only decision procedures he will employ are the invariant ones, that is
to say, those procedures which, while free to vary at will from orbit to orbit of
Z, must exhibit within each orbit complete consistency with respect to the groups
Gz and G, as prescribed in Definition 6.

The main reason for restricting ourselves to invariant procedures has always
been their undeniable plausibility. We are further encouraged by the fact that
in many problems (under a finite group, say, and in other cases) an invariant
decision procedure admissible within the class of all invariant procedures is
known to be admissible among all procedures as well. Moreover, if we should be
looking for minimax strategies, the Hunt-Stein theorem (to be described in the
next section in terms of testing hypotheses) tells us that under certain weak as-
sumptions a minimax invariant procedure is minimax among all procedures too.
For us, however, there is now another and more compelling reason. It turns out
that the use of invariance as a slicing principle, so that orbits rather than points
become the basic elements under consideration, leads in our modified minimax
sense to the best possible generalization of the Hunt-Stein result, namely, that
the invariant procedures form a complete class in the sense of the sliced up risk
functions. In the modified minimax sense, then, the use of invariance provides
a striking simplification of the original problem, particularly when the orbits,
hence the groups, are rather large.

It should be noted in this connection, by the remark in Definition 6 above,
that risk functions p, for invariant procedures ¢ are constant over each orbit of
Q, as is to be expected, so that invariant procedures lose nothing under the modi-
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fied minimax principle of taking suprema. Before presenting our main result in
some detail, it will be convenient and appropriate to give a brief description of
the invariance principle in the language of testing hypotheses, and to state the
classical Hunt-Stein theorem in these terms.

3. The principle of invariance in testing hypotheses. Let (Z, ®, @, P) with
Q= Q u O a disjoint union, be a sample space, and suppose we want to test
Hy:w £ Q against Hytw € Q.

Let there exist a o-finite measure » on (Z, ®) such that there is a real-valued
function p on Z X Q with

P(B|w) = f p(z| w) dv (2) for every w e Q and B £ ®,
B

i.e., we are assuming the existence of a o-finite measure » which dominates all
our probability distributions P,, and p, is the Radon-Nikodym derivative
dP./dv.

DEerINITION 1. The group G is said to keep the testing problem invariant if
w € Q; implies go(w) £ R, 7 = 0, 1, for every ¢ ¢ G, that is to say, if each permuta-
tion go of the elements of @ permutes the elements of Q, and of Q; separately.
(Note that this implies for the testing problem that we are specializing the general
statistical problem down to a two-action setup A = {0, 1} with constant losses
due to a wrong decision and g, = I, the identity mapping, for every g¢.)

DErFinITION 2. By a randomized test is meant a ®-measurable real-valued func-
tion ¢ on Z with values in the closed interval [0, 1], where ¢(z) is the probability
of rejecting H, when z is the observed sample point.

DeriniTiON 3. The test ¢ is said to be invariant under G if for all ¢ and 2
¢(g2(2)) = o(z) except at most on a set of v-measure 0, i.e., if ¢ is essentially
constant on the orbits of Z. If the exceptional set of »-measure 0 depends on g,
then ¢ is called almost invariant.

Let € be a Borel field of subsets of G. Two assumptions will always be made:

i) (g,2) — gz2(2) is ® — € X ® measurable

ii) (g1, g2) = ¢ig2 is € — &’ measurable.

DEFINITION 4. A measure 4 on (G, @) is said to be right invariant if u(Cg) =
p(C) for everyg € G and every C & @. Left invariance is defined using u(gC) = u(C).

As an example of an invariant measure we may take for G the additive group
of reals, € the ordinary Borel sets, and u Lebesgue measure on the reals. No in-
variant probability measure, however, exists for this group, which gives rise to
the following useful limiting notion.

DerINITION 5. A sequence {u,} of probability measures on (G, @) is said to
be asymptotically right invariant if lim,.«(u.(Cg) — ua(C)) = 0 for every
geGand C ¢e.

As an example we take the samg group just given, and for each C ¢ @ and
n = 1,2, ..., define the probability measure u, on (G, €) by

#a(C) = (1/2n)u(C n [—n, n]),
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i.e., we approximate Lebesgue measure p by the conditional probabilities ua
given that g belongs to the closed interval [—mn, n]. Clearly the u, are all prob-
ability measures and 1/2n is the normalizing factor. To prove asymptotic in-
variance, we have, since clearly Cg n [—n,n] = Cn[—-n — g,n — g],

| n(Co) — un(©) | = | o= (€ [=n = g, = g) — 5 u(C n [=n, )

< gl

= —0 as n —> ©
2n ’

showing in fact that the approach to zero for each g is here even uniform in C,
that is,

lim sup | ua(Cg) — ua(C)| =0 for every g £ G.
(This example generalizes at once to the additive group G (real p-tuples) of a
p-dimensional real linear space. One takes conditional probabilities of Lebesgue
measure given the cubes [(—n, - -+ —n); (n, - - - , n)], normalizing by 1/(2n)®,
and, writing ¢ = (g1, -+ , g»), showing that for n sufficiently large, in fact for
2n > maXi,....p | §i |,

| #a(Cg) — pa(C) | = l—H ‘g;b)—-)O asn — .

The Hunt-Stein theorem [4)], in the language of testing problems, then reads:

THEOREM. Let there exist, for the testing problem as just defined, an asymptotically
(right) nvariant sequence of probability measures {u.} on (G, C). Then there exists
an invariant test po among all tests ¢ for which [o(2)p(2 | w) dv(2) = aforall w e Qo ,
and which mazimizes inf.q [e(2)p(2| w) dv(2); i.e., there erists an tnvariant
minimax test ¢o . (The probability with which a test ¢ rejects Ho when  is the
true state of nature is given by B,(w) = [e(2)p(z | w) dv(2). B, is called the power
function of the test and is the only property of the test that interests us, bearing
an obvious relation to the risk function. The original version of the Hunt-Stein
theorem was in terms of most stringent tests. The connection with this vers1on
is easily seen if we subtract one minus the size « envelope power functlon B (w)
from the loss function for @ £ ;. The maximum risk for w £ @, is then the
stringency.)

It will be very helpful for our later understanding to present a brief sketch of
the proof for this simple case, as it contains the essential ideas without the tech-
nical difficulties of the generalization. It depends rather heavily on the fact that
the space of all randomized tests ¢ is compact in the weak -* topology, or more
simply upon one version of this which is the following well-known lemma due
to F. Riesz (see Banach [5] page 130).

Lemma oF F. Riesz. If {¢.} is a sequence of B-measurable functions on Z to the
closed interval [0, 1]—a sequence of randomized tests in our terminology—then there
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extists a subsequence {¢n,} and a test ¢’ such that for every function f integrable with
respect to v

tim [ pu @) dr(e) = [ )@ db(a),

Proor oF THE HunT-STEIN THEOREM: The first step of the proof consists in
showing, by a simple application of Riesz’s lemma, that a minimax solution
o exists. (It is in fact the ¢’ of the lemma associated with a sequence of tests ap-
proaching the minimax condition.) For every ¢ £ G, then, we have that the test
geoo given by (geeo)(2) = ¢o(gz(2)) is also minimax, since the invariance of the
risk function simply means here that the values of the power function of gspo
are just those of the power function of ¢, permuted separately over 2, and over
2 . The minimax tests gspo are then averaged out by the probability measures
un on (G, @), giving rise to the sequence of tests

%@=me@mmn

These tests ¢, are again minimax, as a simple examination of their power func-
tions shows (interchanging orders of integration by Fubini’s theorem, we get,
for each w, permuted values of power functions averaged out over G by u.). Now
take {(p,.‘} and ¢, in the sense of Riesz’s lemma. Then just as for ¢ above, @0 is
also a minimax test. The one remaining difficulty is to show that ¢o is an in-
variant test, more precisely an almost invariant test, and this is accomplished
in two steps by a straightforward 1ntegrat10n argument

1) To show, for each g ¢ G, that (po(gz(z)) = ¢o(2) for almost all [, it suffices
to show that [eo(gz(2))f(2) dv(2) = [eo(2)f(2) dv(2) for every integrable func-
tion f,

2) and this readily reduces to showing that a consequence of asymptotic
invariance of a sequence {u,} of probability measures is that

tin | [ @) a0 = [|_40) anale) | = 0
ns>w | Yg’eg 9'€eg
for every bounded measurable function ¢ of ¢’.

Having done this, ¢ is almost invariant. Finally, a standard argument allows
us to replace @0 by an invariant test ¢o such that ¢ = o almost everywhere
with respect to », provided only that another regularity condition is imposed on

the group G.

4. The modified minimax principle, completeness, and the generalized Hunt-
Stein theorem. We return in this section to the general setup of a statistical
decision problem invariant under a group of transformations, as described in
Section 2, and assume in addition that all our probability distributions P, are
dominated by o-finite measure » on (Z, ®). Without loss of generality, see Halmos
and Savage [6], » may be assumed equivalent to the family of all P, , that is,
if P,(B) = 0 for all w, then »(B) = 0.
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From Definitions 3 and 4 of Section 2, it is clear that a decision procedure ¢ can
be changed on a set of »-measure 0 without changing its risk function, so that
two procedures differing on such a set may henceforth always be taken as equiva-
lent. If in Definition 6 we have gsp = ¢ for each g £ G, where the exceptional set
of v-measure 0 depends on g, we shall call ¢ almost invariant. We denote the
class of almost invariant procedures by ®* and the class of invariant procedures
by &**. Further, we write @ = U,.sQ, where the Q, , s running over an index set
S, are the orbits of 2 under the group Go .

In strict accordance with our modified minimax principle as described in
Sections 1 and 2, we have the following definition:

DEerINITION 1. A procedure ¢ is said to be at least as good in the modified
minimax sense as a procedure y if

sup plw, p) = sup plw, ¥) for every s £ S.
The related notions of admissibility, complete class, ete., in the modified minimax
sense are all similarly defined, in the obvious way. Henceforth in this section, such
phrases as ‘“‘at least as good as” are always to be understood in the modified
minimax sense.

In generalizing upon the Hunt-Stein theorem, we run into the complicated
notions of weak -* compactness, convergence and cluster point for a set of
measures on a topological space. As these concepts are by no means obvious,
it will be necessary to spell them out in some detail. Readers who wish to avoid
topological difficulties may pass lightly over this part of the proof, pausing only
long enough to note that in substance it is designed to show how a cluster point
of a sequence of procedures may be used in constructing a new decision procedure
capable of playing the central role analogous to the one in Riesz’s lemma.

With the general plan of the proof of the Hunt-Stein theorem as outlined in
Section 3 firmly in mind, we now proceed to our generalization. It will be useful
to make here the obvious generalization of Definition 5, Section 3, to an asymptot-
ically right invariant net {u.} of probability measures on (g, €). Readers who
are unfamiliar with the notion of nets may continue to think of sequences. For a
discussion of nets we refer to Kelley [7]. The modified minimax principle, it
should be remembered, requires us to pay strict attention to the fact that the
various permutations. mentioned there never take us out of an orbit, leading to
the sharper result of completeness.

Tue GENERALIZED HUNT-STEIN THEOREM. Let (Z, ®, @, P, A, @, L) be a
statistical problem invariant under a group G as previously described. If the following
regularity conditions are satisfied,

1) there exists a o-finite measure v equivalent to the set of all P, ,

ii) there is a topology on the action set A such that A is a separable metric space
and such that G 18 the Borel field generated by the compact subsets of A, and the loss
function L is such that for each w € Q, L(w, @) ©s non-negative and continuous in a
and zs such that for every real number r, the set {a:L(w, a) < 7} is compact,
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iii) @ s a Borel field of subsets of G and there is an asymptotically right invariant
net {ue} of probability measures on (G, @),
then the class ®* of almost invariant decision procedures vs essentially complete
in the modified minimax sense. If in addition

iv) G s a locally compact o-compact topological group with C generated by the
compact subsets of G,
then the class ®** itself is essentially complete in this sense.

Proor. Let ¢ £¢® be given. We are required to find a ¢* ¢ ®* at least as good
as ¢. We may assume without loss of generality that the risks of ¢ are bounded
on each orbit Q, by finite numbers m, , for otherwise we may clearly ignore such
orbits when comparing a possible ¢* and have only to carry out the following
argument for the remaining orbits.

A) We observe first of all that for each g £ G, the procedure gso is equivalent to
¢ in the modified minimax sense. This follows at once from the invariance of the
risk function, expressed by the formula p(w, gsp) = p(ga(w), ¢), which tells us
that the values of one risk function are simply those of the other permuted within
each orbit of Q separately.

We define for each «,

ouT12) = [ oWhT 1 0:(2) Ao,
a net of randomized procedures got by averaging the procedures gs¢ With respect

to the measures u, on (G, @), and shall show by a simple calculation of their risk
functions that the ¢, are all at least as good as ¢.

o, ) = [ [ Llw, @) deuls] 2) dP.).

The Lebesgue integral transformation comes to our aid here, enabling us to
compute such an expression by writing it as

- ”0» va({a:L(w, a) > h}|2) dh dP.(2)

= fff o(gifa:Lw, @) > h} | g2(2)) dua(g) dh dP.(2).

Now interchanging orders of integration (the integrand is positive) we integrate
out with respect to h and the Lebesgue integral transformation in reverse gives us

- ] [ f L(w, @) de(g4(a) | g2(2)) dPu(2) dualg)
- [ p(w, o) dualg)
[ @), ¢) e

sup p(w’, @),
w’eQ,

IIA
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where Q, is the particular orbit to which w belongs; hence,

sup plw, 0o) = sup p(w, ©) forallse S,
so that the ¢, are all at least as good as ¢.

B) Let X be the collection of compact subsets K of A. For fixed K and any
¢ € P, ok is a B-measurable function on Z to the closed interval [0, 1]. By ®x we
mean the collection of all these functions ¢x with ¢ € ®, i.e., the set of all ran-
domized tests. Now the Banach space L”(») of all bounded ®-measurable func-
tions is the adjoint of the Banach space L'(») of all extended real-valued func-
tions integrable with respect to », and Alaoglu’s theorem tells us that the solid
unit sphere of the adjoint of a Banach space is compact in the weak -* topology.
Hence ®x , as the intersection of a closed set with the solid unit sphere, is also
compact in the weak -* topology on L”(»). By Tychonofi’s compactness theorem,
the cartesian product of the compact sets ®x for all K ¢ X is a compact set in the
product topology of these Banach spaces L*(»). Therefore our net of functions ¢«
defined above has a cluster point  in the product space. A consequence of this,
called the cluster point condition, is.that for any finite number of sets K, any
finite number of functions f integrable with respect to » and any number € > 0,
there is an arbitrarily large a such that

’ f va(K | 2)f(2) dv(2) — f o(K | 2)f(2) dv(z) | < €

Further, since  is a cluster point of the net of functions ¢, , there is a subnet
¢as converging' to it. To simplify the argument, we shall henceforth confine
ourselves to this subnet and drop the second subseript 8, so that @ is now a limit
point of the {¢.}, i.e., for any compact set K and any integrable f we have

[ o191 d) - [ 2K |21 d).

Note that nothing is said about @ being a procedure, for it most certainly
need not be. However, we have the following. By definition, every procedure ¢
has the properties

1) f K,€K,, then ox, < ¢k, ;

2) If K, n K, = ¢, then ¢x,ux, = ¢x; + ¢x, 5

3)ex =15
and it is easily seen that the limit point @ must have the same three properties
almost everywhere with respect to » (in fact has the third property everywhere).
For example, we show property 2).

Let f be a function everywhere positive and integrable with respect to » (such
an f clearly exists since » is o-finite). Define a function g by

9(2) = f(2)[e(K1u K, |2) — o(K1l2) — a(K, | 2)].

g is still integrable, as the product of f by a bounded ®-measurable function.
Applying the limit point condition to the function g and the three sets K,uK,,
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K,, K, we have
[ 1@kE v Kl = oK 2) — 2(Ks| 2] dovCa)
— [ 1@leuEs v Kal2) — eulEs D) — pulKs] 2] dvtz) — 0.
But the second square bracket is zero, hence rewriting ¢
[ 1@ u Kal2) — oK |2) — o(Ka| A dv(e) = 0.

But f was chosen everywhere positive, hence
¢K10Kz = ¢K1 + ¢x,[”]-

We now show how @ may be used to construct a suitable procedure ¢*.

Let ® be a countable subset of & such that ® is closed with respect to finite
unions and finite intersections and such that every open subset U of 4 is a
countable union of interiors of elements R of ® which are themselves subsets of
U (such an ® is known to exist by virtue of our hypothesis (ii) on 4). Consider
the function & restricted to the set ®. Thus restricted, the limit point @ has the
three mentioned properties of a ¢ with only countably many exceptional sets of
v-measure 0, which we may hereby disregard and assume the properties hold
everywhere for ¢.

We define an outer measure ¢* on the open sets U in A4 by the formula, for
each z,

e*(Ul2) = sup ?(R|2).

¢u is clearly a ®-measurable function of z, and for each z we do have an outer
measure by the subadditivity of the supremum. Hence, we can extend ¢* to be a
Caratheodory outer measure by defining for every subset W of 4,

e*(Wl2) = Z}Ialfw o*(U | 2).

o is clearly ®-measurable, and for each z all the Borel sets 7' ¢ @ are measurable.
Restricting ¢* to the set @, it is thus a measure on (4, @) for each z. If we can
show, therefore, that ¢*(4 | 2) = 1 [], ¢* will then be a randomlzed decision
procedure. To do this, we first show that for every compact set K, er = oxlv]:
Let U o K be any open set. Then we have seen U may be written as U =
U g, v (interior of R;) which is then an open covering for the compact set K, so
that for some n, K € U{;R; = R £ ®. Hence ¢x < @z [»]. But R € U, so that
#x < oo[v]. Now write K = N; U;| the intersection of a descending sequence of
open sets, which can be done since our space is metric. Since ¢* is a finite measure
on the Borel sets, we have ox = lumpui everywhere. Combining this with the last
inequality gives ¢r = pxlv] since there are only countably many j involved.
Now consider any ¢ > 0 and any w £ Q. We have for every a, p(w, ¢a) < m,,
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where @, is the particular orbit to which « belongs. A simple consequence of this
inequality is that for the compact set K = {a:L(w, @) < m,/¢} and for every a
there holds
[ 12 dP. > 1~ e

Hence by the limit point condition, since dP.(z) = p(z | w) dv(2), we have
f #(K|2) dPu(2) 2 1 — ¢,

so that by the inequality just proved,

[ & 12 apua)

v

1 — ¢
therefore,
[ o9 dp 21~

But e is arbitrary, and as A is open, we know ¢*(4 | 2) = 1 everywhere; hence,
¢*(A | 2) = 1 almost everywhere with respect to P, , for each w £ 2. From the
equivalence of » to the family of probability measures P, , there clearly follows
o*(A|2) = 1Dl

We might mention in passing that this newly constructed procedure ¢* is a
limit point for the net of procedures ¢, when the appropriate (weak -*) topology is
put on the space ® of randomized decision procedures, so that we have shown
that the set of all procedures having risk <m,, for each w, where the m, are
preassigned finite numbers, is compact in the weak -* topology. [The appropriate
weak -* topology for procedures is characterized as follows. A procedure ¢ is a
limit point of a net {¢.} of procedures if for every compact set K and every
non-negative integrable function f, there holds the inequality lim sup.
[ 0a(K | 2)f(2) dv(2) < [ (K | 2)f(2) dv(2). Since lim, [ ¢ox f dv = [ @& f dv and
#x < ¢*x[¥] and f = 0, the inequality lim. [ pux f dv < [ ¢*x f dv follows.]

C) We now show that this new procedure ¢* just constructed satisfies the
conclusion of the theorem.

We consider its risk function, making the Lebesgue integral transformation
and interchanging orders of integration when necessary.

o, o) = [ [ o*((a:L(e, @) > B} | Dp(e| w) dole) dh
= [ 1 = p*({a:L(, @) S 1} | 2pe| ) do(c) dh

= lim (H - _/;Hf ¢*({a:L(w, @) < h} | 2)p(z]| w) dv(2) dh)

H-»o0
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H
< lim <H - f liquo,.({a:L(w, a) < h}|2)p(z|w) dv(z) dh)
H-»o0 0 a

= lim lim (H - LH f ea({a:L(w,a) < h}|2)p(z|w) dv(z) dh)

H-»0 a

= lim lim foﬂf 1 — ¢a({a:L(w, @) £ R} |2)lp(z|w) dv(z) dh

H>0 a

=< li:n ff ea({a:L(w, a) > h}|2)p(z|w) dv(z) dh

= lim p(w, ‘Pa)

IA

sup p(o’, o),

w’eQ,

where (, is the particular orbit to which « belongs, hence ¢* is at least as good as
¢ in the modified minimax sense.

It remains to show that ¢* is an almost invariant procedure. To do this, we
shall require the following lemma.

LemMA. The asymptotic right invariance of {ua} implies for fixed g £ G that

lim fmg ¥(g)dualg’-g7") — dpalg)] = 0

for every bounded measurable function ¢ of ¢'.

Proor. This follows directly from the definition of integral. Without loss of
generality, we assume [¢| < 1. Partitioning the interval [—1, 1] into equal sub-
intervals of length 1/M, we have at once for each positive integer M the in-
equality.

[ ¥ldnta 6™ — du@)]

—EMM[ {( = ¥(g ')<k+l)g'}
—Ma{g .—<¢(')<k+1}]|§:—l.

For fixed M, the second square bracket approaches zero as « approaches infinity,
hence lim sup. | [ ¥(9")[dp.(g'-g7") — dua(g’)] | < 2/M. As this is true for every
M, the lemma, follows.

Let, now, g&¢G and a compact set K be given. We shall first show
that @(g% K | gz(2)) = @ (K | 2)[»]. To do this, it suffices to show that

[ PWiK | 0:) — 2K | 2116 dble) = 0

for every integrable function f. Since & is a limit point of the ¢, in the weak -*
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sense, the formula for ¢, in terms of ¢ makes this last integral
= im [ [ o(6i K | 63 @)f@) dv(@)ldualg’-6™) — dusald)].

But y¥(¢') = [ «p(g;"K | g'z(z))f(z) dv(2) is a measurable function of ¢’ and is
bounded by [ | f| d, so our integral is indeed zero by our lemma.

We now show that ¢*(g4 K | g2(2)) = ¢*(K | 2)[»]. Let U, an open set, and L,
a compact set, be given such that K € U C L. ¢y is by definition the supremum
of the @z, all of which are less than or equal to @y, so that ¢y < @.[»], thus
permitting us to write ox < ¢g < @1, < ¢1[»]. Applying the group element g to
these inequalities, we may extract the following:

o*(g4 K | 92(2)) = #(ga L | g92(2)) = #(L | 2) < ¢*(L | 2) [].
We may also extract
e*(K |2) < o(L|2) = o(gs L | g2(2)) < ¢*(ga L | 92(2)) D).

Taking a sequence {L,} of such compact sets with K = N L, and passing to
the limit we get ¢*(g4 K | 92(2)) = ¢*(K | 2) < ¢*(g4 K | g2(2)) [»], thus estab-
- lishing the equality [v].

From the nature of our topology on A and the way @ is generated by the com-
pact sets K, this last equality extends by a standard transfinite induction argu-
ment to every set T £ @, thus establishing the almost invariance of ¢*. The
argument goes as follows.

Note first that @ is equal to the smallest monotone class 9M(X) containing the
compact sets: A is o-compact (the union of a sequence of compact sets). The
o-ring of subsets of A generated by X, containing the whole space A, is therefore
a Borel field, thus equal to the Borel field @ generated by X. Obviously (%) <
@. The proper difference K — L of two compact sets belongs to 9(X) since,
writing L = N, U, the intersection of open sets, we have K — L = U (K — U,)
which is s-compact. Therefore the class of all finite unions of these proper dif-
ferences belongs to 9M(%). Thus (see Halmos [3] Theorem F, p. 223) an(x)
contains a ring containing X, so that (Halmos again, Theorem B, p. 27) (k) o
@, hence M(X) = Q.

Write B = X = {the compact sets] and for every ordinal number a let
®. = {all monotone limits of sets S, , where S, £ ®s, and 8, < a}. For every
a, ®, is well-defined. Then @ = 9M(X) means that @ = U 4 <., B, Where w is the
first uncountable ordinal. Having thus characterized @, the proof proceeds by
transfinite induction on a: Suppose our equality [»] holds for all s with 8 < a.
Consider any set T ¢ B, . Then T = lim T where T, £ ®s, and B. < a. The
equality [v] holds for these T', by the induction hypothesis, therefore it holds for
the limit 7 since there are only a countable number of sets of v-measure 0 in-
volved. The equality [»] holding for all T £ ®., for all «, it holds for every
T £ @, and ¢* is almost invariant.

D) With our assumptions on (G, €) we now proceed to replace this almost
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invariant procedure ¢* by an invariant procedure ¢** such that ¢** = ¢* [4],
thereby completing the proof of the theorem.

Let us return to the class ® of part (B). Since G is a locally compact topological
group, there is a right invariant Haar measure A on (G, €). We define a function
o** as follows: For each R ¢ R

1) let o**(R | 2) = ¢*(R | 2), for all z such that

o*(gi R | g2(2)) = o*(R|2) I
ii) for all such z in (i), and each g, let
o**(g4 R | 92(2)) = e*(R | 2);

iii) let o**(R | 2) = O elsewhere.
To show that (i) and (ii) are not contradictory, suppose there existed R, ,
21,01 with Rz = 9'1’4 Rl y %2 = glz(zl)r and

©*(g4 R1| g2(21)) = ¢*(Ri|21) DN
o*(ga R | 92(22) = ¢*(Ra|2) [N,
but with ¢*(R; | z1) ¥ ¢*(R:2 | 22). Then it would follow that
0 = Mg:o*(gh Re | g2(22)) = o*(Rz | )}
= Mg:o*(gh B | g5(22) = o*(B1 | 20)}
= Mg:0*(g4 914 B1 | 92(01,())) = o*(Ba| 21)},
which by the right invariance of A
= Mg:0*(g4 R1| g2(21)) = ¢*(R1 | 21)}
= N9).

But 0 = \(Q) contradicts the fact that A is a Haar measure, hence ¢** is not
contradictorily defined.
We now show, for each R £ ®, that

™R |2) = ¢*R|2) [
Let
V = {(z,0):0*(ds R | g2(2)) # ¢*(R | 2)}
V. = {g:¢*(ga R | g2(2)) # o*(R | 2)}
Vo, = {z:0*(gs R | g2(2)) = o*(R | 2)}.

The almost invariance of ¢* implies that »(V,) = 0 for each g. Moreover, A is
o-finite since § was assumed o-compact, hence by Fubini’s theorem (Halmos [3]
Theorem A, p. 147) (v X A\)(V) = 0. By the same reference this implies A(V,) =
0 [], hence o**(R | 2) = o*(R | 2)[5].

Since ® is countable, we may disregard sets of »-measure 0, so that for all ..,



INVARIANCE THEORY 17

z and g we have

¢**(ga R | g2(2)) = ¢*(R | 2) = ¢**(R | 2).
Extending this equality in the obvious way to the open sets U, then to the
compact sets K, a transfinite induction on « exactly as in part (C) above extends
it to all the Borel sets T ¢ @, thus completing the proof of the generalized Hunt-
Stein theorem.

Remarks. It may prove useful in certain applications to point out an easy
extension of the above result. Clearly, everything we have said goes through if ®
is any invariant, convex and closed set of randomized decision procedures rather
than the class of all of them. That is, under our regularity conditions, if ® is
closed in the weak -* topology, and if for every probability measure A on (G, €)
and every ¢ £¢®, the procedure ¢, given by on(T | 2) = [ o(ga T | 92(2)) d\(g)
belongs to ®, then for each ¢ £ ® there is an almost invariant ¢* ¢ ® which is at
least as good as ¢ in the modified minimax sense, and so on. For example, the
classical Hunt-Stein theorem follows from this by taking ® to be the set of all
procedures ¢ satisfying the inequality supu.q, plw, 0) = a

The condition in hypothesis (ii) that L(w, a) be non-negative is not essential.
We only require it to be bounded from below, and this is automatically assured
by the compactness condition.

An example of theoretical interest. Let {P.} be the set of all probability distribu-
tions on the positive integers, E the set of even integers, A = {0, 1}, L(w,0) = 0
if P,(E) > 1/2 and = 1 if P,(E) = 1/2, L(w, 1) = 1 if Pu(E) > 1/2 and = 0
if P,(E) < 1/2, an action to be taken after observing one positive integer.

Let ¢ be a strategy, where ¢(n) is the probability of taking action 0 (saying
“even”) when integer n is observed. It can be shown, but only after a compli-
cated argument, that ¢ is a Bayes solution if and only if it does “the right thing”’
for at least one integer n, i.e., if ¢(2n) = 1 or ¢(2n — 1) = 0 for at least one
integer n. Further, all these strategies are admissible, but the class of all admis-
sible strategies is not known. A plausible conjecture seems to be that ¢ is ad-
missible if and only if inf, min {¢(2n — 1), 1 — ¢(2n)} = 0. Thus we see that
even in the simple case of one observation, the classes are extremely large.

Let us consider this problem in the light of the invariance principle. Let g
be the particular kind of permutation of the integers which, for some n, permutes
the first n even numbers and the first 7 odd numbers separately and leaves the tail
untouched. The set G of all such permutations for all n clearly forms a group,
containing countably many elements g, which leaves the problem invariant. Let
@ be the set of all subsets of G. The set Z of all integral outcomes breaks up into
two orbits under the group, which we may write as E and O for “even” and
“odd.” The orbits 2, of @ (closed in a suitable topology, a matter we need not
go into here) are given by

Q, = {w:P,(E) = s}

for all s belonging to the closed interval [0, 1]. There is an asymptotically (right)
invariant sequence of probability measures on (G, @), as follows: Let u, be the
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measure which assigns equal probabilities of 1/(n!)* to each of the (n!)® elements
g affecting the first 2n integers only, and 0 to the remaining elements of §. To
prove the asymptotic invariance of this sequence, we simply note that given
g € G, there is an integer mp such that g affects the first 2n, integers only, so that
for every C & @ we necessarily have u.(Cg) = u(C) for all n = ny. By the
generalized Hunt-Stein theorem, then, the problem reduces to the classical
binomial case, say of tossing a coin once with unknown probability s of showing
heads (even).

6. Mixed games, and the use of previous experience. In this section we present
a purely game-theoretic model for the modified minimax principle, and suggest
how by means of this model and our previous experience the principle might be
applied in practice to bridge the gap between the Bayes and minimax approach.

Mized Games. Let there be given a pair of games G, = (X;, Y, M,) and G; =
(X:, Y, M,) with the same Y-space of randomized strategies available to the
second player. Let p and ¢ = 1 — p be fixed probabilities with which player I
is to play the respective games. We shall call such a setup a mixed game for
player I. A strategy for the first player is then equivalent to an ordered couple
(@1, x2), 1€ X1, 72 ¢ X, , signifying his choice of strategy depending on the
game he must eventually play (say, after a coin with probability p of heads is
tossed). The payoff function M is clearly given by

M((xl ’ x2)y y) = le(xl ’ y) + qu(xz ’ y)

We denote the mixed game by G = (X; X X,, Y, M).

More generally, given G; = (X;,Y,M;) 7= 1,2, --- and probabilities p; of
playing the game Gi(p; = 0, D_; p; = 1), the mixed game for player I is equiva-
lent to the game G = (X, Y, M) where

X=X1XX2>< e X = (xl’xz’...)sX

is a strategy for the first player, and M(z, y) = 2 : ps Mi(z:, y).

In the most general case, we have games @, = (X,, Y, M,) with s¢ S an
index set, 8 a Borel field in S, and P a probability measure on 8. A strategy for
player I is now a function f on S with f(s) & X, for each s £ S (i.e., f is a point in
the function space X = X,.s X,) and

M) = [ M5, ) aPG).

Let us now consider the minimax principle from the point of view of the
second player. For simplicity we confine ourselves to the discrete case, although
the argument is general. For each strategy y ¢ ¥, the second player seeks to
minimize sup, M(z, y) over y. But sup, M(z, y) = D P Supa.ex, Mi(z:, y) =
Z.- pi a(t, y) is just the average with respect to the p: of the sliced up risk
function in the modified minimax sense, where each slice is the old payoff function
M; for the ith game. (The point (a(1, y), «(2, y), - - -) is the generalization of the
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a-B set for testing composite hypotheses.) Hence playing minimax in the mixed
game is equivalent to playing Bayes in the sliced up game.

The use of previous experience as a slicing principle: In a paper on the use of
previous experience in reaching statistical decisions, Hodges and Lehmann [8]
propose a guess at an a priori distribution A for the states of nature on the basis
of previous experience, and a safeguard in case the guess is incorrect. If ¢ is the
minimax risk, they seek to minimize [ p(w, ¢) d\(w) among ull procedures ¢
satisfying the restriction sup, p(w, ¢) < ¢ + k where k is a given positive number.
They call such a minimizing procedure ¢ a restricted Bayes solution (we might
say the Bayes principle is given a minimax restriction). If \ is suspect, k is made
small; as confidence in A grows, k may be raised. Note that as k — « or is large
enough, the restricted Bayes solution approaches the Bayes solution; as k£ — 0,
the restricted solution approaches the minimax state (for ¥ = 0, we have a best
minimax procedure relative to A).

Another way of looking at the modified minimax principle, with a view to apply-
ing it in practice, suggests that we reverse this procedure. That is to say, to
start with the minimax principle and then modify it gradually or greatly as
previous experience is gathered—to assume less and trust it completely, a sort of
Bayesian modification of the minimax principle. Specifically, to take the most
simple case, we might use the best of our information to break up or stratify @
into ©; and €, with certain probabilities p and 1 — p attached thereto, and then
play minimax in the resulting mixed game. (Say, a machine is known to produce
with probability p = .95 coins whose probabilities of showing heads when tossed
lie between .4 and .6. ©; is then the interval from .4 to .6, 2, its complement in
the unit interval, and the corresponding games are mixed in the ratio .95 to .05.
If the probability that w £ @ is at least p, then we would mix 2, and all of £ in
the proportion p to 1 — p, and so on.) As more knowledge is acquired, we might
adjust the value of p, or better still, feel confident enough to partition & into a
larger number of sets with certain p; attached, or even into a family {Q,} of sets
with a probability measure P over it, and then play minimax in the resulting
mixed game. By the above, this is equivalent to playing Bayes in the sliced up
game. If each 2, consists of only one point, we are really postulating an a priori
probability distribution P over the states of nature, so that minimax in the
mixed game is exactly Bayes for the original game. Thus we see how previous
information might be used in any given problem to slice 2 into subsets, and how
it is possible to go from the minimax extreme to the Bayes in easy stages, by a
gradual modification of the minimax principle. '
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