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Inequality (6) should be replaced by
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Inequality (7) should be replaced by
(7) F(x|3) — Fu(z) 2 —max | Fu(Xjx — 0) — F(X3% — 0)]3) | — 1/k.
sis

Inequality (8) should be replaced by

| Fa(z) — F(2|3) | = 1/k + max {| Fu(X s — 0)

(8) 1<jsk

— F(Xp —0]9) |, |[Fa(Xa) — F(X3u|93) |}.

Immediately after inequality (8) the following sentence should be added:

In a way similar to the proof on the bottom of page 829 one may easily verify
that P[F.( X% — 0) 2 F(X — 0]3)] = 1.
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CORRECTION TO
“ON THE THEORY OF BAN ESTIMATES™

By RoBERT A. W1ISMAN
University of Illinots

I am greatly indebted to Dr. Lucien LeCam for calling to my attention an
error in the proof of Theorem 1 of the paper cited in the title (Ann. Math. Stat.
Vol. 30 (1959), pp. 185-191). The transition from (12) to (13) is in general
not justified. Worse, the theorem itself is false in general, as can be shown with
a counter example. In order to remedy the situation, the assumptions have to be
strengthened. This can be done either on the distributions of the Z, , or on the
estimator . As an example of the first, if the Z, have densities which (when
normalized) converge a.e. to the limiting normal density, then the transition

1 Work supported by the National Science Foundation.
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from (12) to (13) is valid [9] and with that the proof of Theorem 1 is correct.
However, this seems too strong an assumption to be of much practical value,
since so many examples deal with discrete random variables. Turning now to
assumptions on 8, we could require (4) to be true for all sequences Z, for which
(1) holds. Taking then in particular Z, : N(¢(8), =(8)/n), the previous case
(convergence of densities) applies, and the conclusion of Theorem 1 follows.
A more attractive, even though slightly stronger, assumption on 8 is to require
it to be differentiable in every point of U. This insures, of course, continuity in
every point of U but not continuity in a neighborhood of U, leave alone differ-
entiability in a neighborhood of U which would be the requirement for a regular
(1) estimate. We are thus led to the following modification of Definition 2
and regular (2): :

DEerFinITION 3. § will be called regular (3) if (i) 6(¢(8)) = 6 identically
in 6°; (ii) @ is differentiable in every point {(8) of U.

Let the matrix derivative of 4 in the point {(8) be denoted by A4 (8). Theorem
1 now follows immediately by differentiation of (i) of Definition 3 (which is the
same as equation (2)). A few remarks about 4 (6) are in order. In the first place,
the existence of this derivative in every point of U implies (4) for every sequence
Z, satisfying (1). Secondly, it is not necessary to require A to be continuous in
6. However, if 8 is constructed according to Theorem 2, then 4 = (BV)™'B
(see eq. (6)) so that A is continuous due to the continuity assumptions on B
and V. Under all circumstances, the A corresponding to any BAN estimate is
continuous since it is given by 4 = (V/Z7'V)7'V/z7

It is somewhat remarkable that Theorem 2 remains true if, in the conclusion,
regular (2) is replaced by the stronger regular (3). The surprise is that § turns
out to be differentiable in each point of U, even though no differentiability
assumptions are made on B. Therefore, a proof of Theorem 2, with regular (2)
replaced by regular (3), seems to be in order. Before doing this, it may be of
interest to point out that Ferguson’s estimates [5] are also differentiable in
each point of U since they are generated by (5) with B(z, 0) satisfying even
stronger assumptions than in Theorem 2. Comparing now the various kinds of
regular estimates, we have that regular (1) estimates are continuously differ-
entiable in a neighborhood of U, Ferguson’s estimates are continuous in a
neighborhood of U and differentiable in every point of U, while regular (3)
estimates are differentiable in every point of U.

Proor or TurorREM 2, with regular (2) replaced by regular (3). It suffices
vo show that in each point of U there is a neighborhood possessing the properties
aseribed to the neighborhood N in the conclusion of Theorem 2. Then N can be
caken as the union of the individual neighborhoods. Consider any point of U.
We may take this as the origin of the coordinate system in Z. For the purpose
of the proof we may make the same transformations as in Section 4 (observe

2 The assumption (i) of Definition 3 is the same as equation (2). Instead, we could have
made the same assumption as in Definition 1 (i). The two assumptions are equivalent
since § is supposed to be continuous in each point of U.
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that ¢ is differentiable due to Assumption 2 (iii) and (iv)). We may suppose
then that U is a linear subspace of Z, spanned by the first m coordinate axes,
and that ¢ is the identity function from U to U. Thus we have identified U
with the parameter space Q. A point « of U has its last & — m components equal
to 0; the m-vector formed by its first m components will be written 6. Let Iy,
be a k X m matrix whose elements are 1 on the “main diagonal’’ and 0 otherwise.
We can write then v = I;,6. The transformations which we have employed
replace in (5) ¢(8) by Irn0, and B(z, ) by some other matrix, which, however,
we shall again denote by B(z, 6). The matrix V(0) is replaced by Iin.. Put
B(z, 0) Itm = C(z, 6), then by assumption C(0, 0) is non-singular. Further-
more, C is continuous in (z, 8) at (0, 0). Put C"'B = D, then D(z, ) exists in a
neighborhood of (0, 0), is continuous in (2, ) at (0, 0) and is continuous in
for each fixed z. Let S; X 8S; be such a neighborhood, where S; is a solid k-sphere
about z = 0 and S, a solid m-sphere about § = 0. In addition, we may
choose the radii ~ and r, of S; and S, so that for (z, ) € S; X S: we have
|D(z, 6) | < r2/r1. We now write (5) as

(25) 6 = D(z, 6)z.

For each z ¢ S;, the right hand side of (25) is a continuous transformation of S,
into itself. According to the Brouwer fixed point theorem [7] there is a fixed point
of the transformation, therefore a solution 8(z) to (25). Write

(26) 0(z) = D(z, 6(2))z.

For ze 81, || D(z, 8(2)) || is bounded, so 8(z) — 0 as z — 0. Hence § is con-
tinuous at 0. From this we have D(z, (z)) — D(0, 0) as z — 0, and from (26)
it follows then that @ is differentiable at z = 0, with matrix derivative D(0, 0).
This proves that on S; 8 is regular (3). In the original coordinate system the
matrix D(0, 0) takes the form (BV)™'B, evaluated at some point ({(8), 6).
This leads immediately to (6). The last assertion in the conclusion of Theorem
2 is proved in [3].
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