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1. Summary. Let X;, X;, --- be independent and identically distributed
random variables with possible values that are integers whose differences have
g.c.d. one. Assume the m.g.f. of X; exists in an interval about 0, let a be any
number such that E(X;) < a < sup X1, and let ¢(a, t) = Ee“x"“) There
exists a unique value ¢*(a) of ¢ which minimizes ¢(a, t) with respect to ¢; write
m(a) = ¢la, t*(a)] and z = ¢ Let Y1, Y, --- be independent and identi-
cally distributed random variables such that Y, and X, have the same range
and Pr(Y; = z) = Pr(X; = 2)-¢"“““/m(a), and let p» = o pz, ps be
central moments of Y.

We show that Pr{X; + --- + X, = na} = |m(a)]" Pr{Y1 4 -+ + Y, = na},
and use this to establish the approximation Pr{X; + --- + X, = na} =
[l + 0(n"?)], where na is a possible value of X; + --- + X, and

*k [m(a)]* (#4 5 M§>]
o _a\/21rn[1+8n __3_5;7;'} )

Similarly we find that Pr{X; + -+ + X, = na} = IL**[1 + 0(n™")], where
s _ a1 { - [(Zns/uz) +2(14+2)/(1 — 2)]}
n

Hn = n
™ 1T—=% 1 — 2

We provide some numerical illustrations of the accuracy. of these approximations,
and give a conjectured analog of the leading term of I* for nonlattice variables.

2. Introduction. Let X; , X, --- be independent identically distributed
random variables whose common moment generating function Ee™* is finite in
some interval about 0, and let a be any number such that E(X;) < @ < sup X; .
We shall be interested in the tail probability

I.(a) = Pr{X; + -+ + X, = na}.

As n — = we shall of course have II,(a) — 0, since na exceeds the expected
value of the sum by about /7 standard deviations. The study of the speed
with which II.(a) — 0 was initiated by Cramér [2] in 1938; his results were
extended by Feller [3] and Chernoff [1].

Denote by ¢(a, t) the moment generating function of X; — a: ¢(a, ) =
Ee'™™™_ Chernoff shows that for each a there is a unique value of ¢, say t*(a),
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for which ¢ achieves its minimum, and writes ¢[a, t*(a)] = m(a). He shows that.
for every ¢ > 0,

[m(a) — " £ Mi(a) £ [m(a)]”

for sufficiently large n, with the right inequality holding for all n.

This result establishes in a sense the speed with which IT,(a) — 0, but it is
not precise enough to permit the approximation of II,(a) with a small relative
error, since the ratio of upper to lower bound tends to infinity with n. There
remains the problem of developing a relatively accurate approximation for
II,(a). Cramér [2] has found such an approximation for the case in which X,
has an absolutely continuous component. We are interested in the case of lattice
variables, i.e., the case in which there are constants A # 0 and B such that
AX, + B has only integer values.

3. An identity. In this section we restrict attention to sequences {X,} of dis-
crete variables.

TueoREM 1: Let X1, X», --- be independent identically distributed discrete
variables whose common moment generating function E(e'™') is finite for some
interval about 0. For any a with E(X;) < a < sup X, let

m(e) = min Ee'®™ = min ¢(t, a) = ¢[t*(a), al, say,
t ¢

and let Y1, Yy, - -+ be independent identically distributed discrete variables whose
common distribution is defined by

Pr{Y, = z} = Pr{X, = 2} exp [t*(a)(z — a)]/m(a) for all z.
Then for all n,
PriX;+ - + X, = na} = [m(a)]"Pr{Y;+ --- + Y, = na}.

The shift from the random variable X to the random variable Y has the
effect of moving our event from the extreme tail to the center, since na is just
the expected value of Y7 + -+ -4 Y, . This shift is not new. It is essentially
carried out in Cramér’s original paper. Wald [6] made a similar change in his
“conjugate” distribution, introduced in the study of a problem arising in se-
quential analysis. Shannon [4] encountered the shift in a problem of information
theory, and remarked (p. 15): “These tilted probabilities are convenient in
evaluating the ‘tails’ of distribution that are sums of other distributions.”

Proor or THEOREM 1: As noted by Chernoff, ¢(i, a) is for each a a strictly
convex function of ¢ and attains its minimum at a unique ¢ = t*(a). Write
p(z) = Pr{X; = z}. We have ¢(a, 1) = 2. p(2)e'“™®, so that
(1) ¢la, t*(a)] = 2 (z — a)p()e” ™ =0,
where ¢; denotes the partial derivative of ¢ with respect to its ¢th argument.
Write q(z) = p(z)e” ““ ™ /m(a). Then ¢(z) is a discrete probability distribu-
tion, and (1) asserts that the mean of the ¢ distribution is a. Let ¥, Ya, - --
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be a sequence of independent identically distributed variables with common
distribution ¢, and let z;, - -+, 2, be any sequence of numbers whose sum is
na. Then

Pr{(Yl) ) Yn) = (xl, e :xﬂ)} = Q(xl) o Q(xn)
= p(@) -+ p(@a) exp [*(a)(m + -+ + @ — na)]/Im(a)]”
= Pr{(X:, --+, Xu) = (m, -+, @a)}/[m(a)]".

Summing over all sequences (x1, -- -, ,) Such that ; + --- + x, = na yields

the assertion of the theorem.
Theorem 1 extends to M-dimensional variables without change. We shall not

use this extension, but give it for completeness.

TureoreEM 2: Let X1, X2, -+ be independent identically distributed discrete
M-dimensional variables, and let a be any interior point of the convex hull of the
range of X1, a # u, where u = E(X:). Suppose that there is a positive number b
such that the moment generating function Ee‘** is finite for all t for which |t| < b
and t-(a — p) = 0 where, for anyt = (&1, -+ , tw), z = (X1, **+, Tm), t-T
denotes the inner product Y tx;. Then the moment generating function of X, — a
achieves its minvmum value m(a), say, at a uniquet = t*(a), say, and,if Y1 , ¥, ,- - -
are independent identically distributed discrete M-dimensional variables whose com-
mon distribution is defined by Pr{Y; = x} '= Pr{X; = a}e"" " /m(a), then, i
has mean a and, for all n,

Pr{X,+ --- + X, = na} = [m(a)]"Pr{¥1+ --- + ¥, = na}.

The proof parallels that of Theorem 1. Again, the moment generating function
has a minimum m(a) at a unique t*, at which d¢ | 9, = 0 for all 7. These equa-
tions assert that the ¢ distribution defined by ¢(z) = Pr(X; = z)e"“™®/m(a)
has mean a, and the rest of the proof is as before.

4. The individual term. In this section we shall specialize to the case of lattice
variables. This means that it is possible by a linear transformation to assure
that the values of X; are integers whose differences have g.c.d. 1; we assume
this reduction has been carried out. We are then able to develop expressions for
m(a), using a method exploited for example by von Mises [5 Sec. 8].

Let o® = s, ps, ua be central moments of ¥ of order 2, 3, 4. We shall estab-
lish

Tueorem 3: If Xy, X,, --- are integer-valued variables satisfying the hy-
potheses of Theorem 1, the approximation
m(a)]"

vV 2rne
for wa(a) = Pr{Xy + --- + X. = na} has relative error of order n™*, while the
approximation

mn(a) =

1 5 ps
i (a) = r:(a){ 1 +§7—2[% -3 —glﬁ]}

2
for wa(a) has relative error of order n™°.
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ProoF: In general, if a random variable U with characteristic function 7 has
only integral values it is easy to check [5] that

Pr(U = u) = (1/2¢) [ (t) at
Since Y1 + --- 4 Y, is such a random variable, we have
Pr(Yi+ - + Vo= na) = (1/20) [ e n(0) a

where {(¢) is the characteristic function of ¥ and na is an integer. Finally, if we
write ¢(t) = ¢ “%(t) for the characteristic function of ¥ — a, we have
Pr(Yi+4 -+ + Y. =mna) = (1/2r) [T ¢"(t) dt.

To evaluate this integral, let us first take it over the range | ¢ | < log n//n.
If we make the usual expansion of log ¥(¢) in terms of the cumulants , of ¥; — a,
observe x; = 0, and write x, = ¢, we find

no?t?

;l/”(t) = 2 exp{ n 2 Kr(’i't)r + o(n—Z)}

r=3 ri

when |t| < log n/4/n. The transformation /7 ¢ ¢ = u and series expansion
of the second factor puts the integrand in the form

Y 3 4 2 4,6 P.
(2) e““z/z{ L LA, [ﬂ s ] + 1—:2717; + n_: + o(n—2)}

- 603\/; nl 24" 724°
over |u | = ¢ log n, where P, denotes a polynomial in «*. Using the fact that
o log n p+l1
(3) f we ™ tdy =22 T (—Z-’-—;—l) + o(n™®)
—o log n

when p is even, and vanishes when p is odd, we find

1 flog alvm 1 { 1 [#4 5#%] ~2 }
) 27 I og nyvm Vi) oV/2mn + 8n | u3 3u3 )
where we have expressed the cumulants in terms of the central moments g, .
Turning now to the range log n/v/n < |t| < =, we shall show that this
part of the integral is negligible. Since i; = 0 and 0 < ¢° < o, we can find
0 <t < msuch that |¢(¢t) | = 1 — (¢"f/3) for | t| < t,. Therefore, over the

range log n/A/n < |t]| £ t,
'fxlm(t)dt, <2 R g

log n/\/;

which is o(n™") for all k. As for & < |¢| < m, note first that our assumption
that the possible values of X, are integers whose differences have g.c.d. 1 im-
plies that, when 0 < |¢| < =, the points ¢ can never all coincide, and hence
that D, g(x)e™™ lies inside the unit circle. Therefore

() | =™ X q(@)e™| <1 for o <|t|=m,
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and by the continuity of ¢ there is a number p < 1 for which |¢(¢) | < p in
this range, over which [ ¢"(¢) dt is 0(p"). We may therefore take the right side
of (4) as an expression for (1/2x) [Z. ¢"(¢) dt, and hence for

Pr(Yi+ - + Y, = na).

This fact, combined with Theorem 1, proves Theorem 3.

We present in Table 1 a few illustrations of the accuracy of the two approxi-
mations. Here, by the relative error of an approximation #’ for a quantity = we
mean (7'/x) — 1. The values of X are 0,1, ---, 7 — 1.

5. The tail probability. An extension of the methods used above provides
expressions for the tail probability. We are indebted to D. A. Darling for sug-
gestions which led to this result.

TarorEM 4: If X1, Xo, -+ are integer-valued random variables satisfying the
hypotheses of Theorem 1, then the approximation

In(a) = ma(a)/(1 — 2)

for My(a) = Pr{X1 + --- + X, = na} has relative error of order n™", while the
approximation

* _ _ 1 [ (eps/pe) + 2(1 + 2)/(1 — 2)
it = o) {1 - g [l AL I

for I,(a) has relative error of order n™".
Proor: An easy modification of Theorem 1 shows that, for any integer £,

k) =Pr(X;+ - + X, =na+k)
=ma)]" e Pr(Yy 4+ -+ + Vo =na + k)

TABLE 1

Relative error of

r ? a ” T N .

Tn T
3 3 5 03 3 8 .040542600 .0327 —.0%173
16 .0260067293 .0162 .04252
32 .0318201692 0.02804 .05740
64 .0623350658 0.02400 .05203
3 8 .0254869684 .0556 —.0816
16 .0184094675 .0275 L0654
32 .0726832893 .0101 .04192
36 3 8 .0279040527 .0331 —.02379
16 .0324029752 .0182 —.04188
32 .0630784454 .02901 .05307
4 Hi i1 b 8 .021789551 .0291 .0%395
16, .0223290971 .0142 .0%109
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while the proof of Theorem 3 gives
PrYi4 - +Y,.=na+ k) = 2% f e *yn (1) dt.

Summation over k£ now gives
—K(it+t%)

e = tim 5 xt) = Oy [71 =

Pl T V(0 dt.
Because of the boundedness of the integrand, we may pass to the limit inside
the integral to get

[m(a)]” ™

(5) H" = 27!' —_ 1-—

— y"(¢) dt.

where z = ¢ < 1.

The evaluation of this integral is much like that in the proof of Theorem 3.
Since 1/(1 — ze™*) is bounded, the integral over | ¢| = log n/+/n is negligible
as before. As before, we substitute 1/n ¢ ¢ = u, and find that when | u| < ologm,

1 _ 1 t2u _ 2(1 + 2)d° uP; 2
1—z#* 1—2z o(1—2%n 2301 — 2)n + + ; + o)

where the P; again denote polynomials in %’. Combining this with (2), and
integrating the various terms with the aid of (3), we find

T \/21r 1 fpe o 5u§:|
[ vwa-= {1+8n|: 334
_ 2wl =2+ 01+ -
on p + oln )}'

This, combined with (5), yields Theorem 4.
We present in Table 2 a few illustrations of the accuracy of the approxima-
tions. As in Table 1, the values of X are 0,1, --- ,» — 1.

TABLE 2
Relative error of
r b a n o, .-
II:. ) 1 9
3 30503 H 8 .064471879 0.148 —.0888
16 .0209484233 0.0846 —.0289
32 .0330990382 0.0465 —.00861
3 34,3 3 8 .011276245 0.0862 —.0259
16 .0335039405 0.0474 —.0%733 .
4 Lo b i 3 8 .040328979 0.134 —.0705
16 .0244785112 0.0757 —.0224
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6. The nonlattice case. For nonlattice variables, let us heuristically treat
* pegaannl . . .

m.(a) = m"(a)/o(a) v/2rn as an approximation to the (in general nonex-

istent) density of X; + --- 4 X, at the point na, and proceed formally.

Prixi + -+ + X. = na) Nf 1r:<a + 2) dx
0

= mn(a) f: [w*(a + ;z)/ r’,‘:(a)] dx

_l: n
o m(a + ~> dx
* n
~ Ty,(d) \/0‘ -

m(a)

~ 7 (a) fow exp [xm'(a)/m(a)] dx

—r*(a) f: exp [—at*(a)] dv = =*(a)/t*(a).

10 :

+Xq42 640}

P'{x"“'"

0 1134 144

Fia. 1
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We thus obtain the approximation
I (a) = n(a)/t*(a).

We conjecture that this approximation has a relative error which is O(n™),
just as the corresponding approximation did in the lattice case. For variables
with an absolutely continuous component, IIx(a) is just the leading term in the
expansion obtained by Cramér [2] and is thus known to be correct. The conjec-
ture is supported by numerical evidence for the case in which X has values 0, 1,
and /2 with equal probabilities. We have computed a portion of the tail of
this distribution for » = 64, which is shown in Fig. 1 with the approximation
superimposed.

REFERENCES

[1] HerMaN CHERNOFF, ‘A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations,” Ann. Math. Stat., Vol. 23 (1952), pp. 493-507. -

[2] H. CraMER, “‘Sur un noveau théoréme-limite de la théorie des probabilités,” Actualités
Scientifiques et Industrielles, No. 736, Paris, 1938.

[3] W. FELLER, “Generalization of a probability limit theorem of Cramér,” Trans. Amer.
Math. Soc., Vol. 54 (1943), pp. 361-372.

[4] C. E. SmanNoN, “Certain results in coding theory for noisy channels,”” Information
and Control, Vol. 1 (1957), pp. 6-25.

[5] RicaaRD voN Misks, ‘“‘Wahrscheinlichkeitsrechnung und ihre Anwendung in der Sta-
tistik und theoretischen Physik,” Leipzig 1931.

[6] ABRAHAM WALD, ‘““Some generalizations of the theory of cumulative sums of random
variables,”” Ann. Math. Stat., Vol. 16 (1945), pp. 287-293.



