CONTRIBUTIONS TO THE THEORY OF RANK ORDER STATISTICS—
THE ONE-SAMPLE CASE'
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0. Summary. The one-sample problem is considered using techniques de-
veloped earlier [2], [3]. Let Z = (Z1, --- , Zy) be a random vector with Z; = 1(0)
if the 7th smallest in absolute value in a sample of N from the density f(x) is
positive (negative). Then

N
Pz=2)=N[ - [T (=g dyd
0<y1< -+ SYNS® =1
Conditions are found implying P(Z = z) > P(Z = 2') where z is derived from
2’ by replacing a 0 by a 1, or interchanging a 0 and 1 in 2’ by moving the 1 to
the right. These conditions are met by the normal and other distributions.
The results are useful in finding good tests of such null hypotheses as
X,, ---, Xy are independently and identically distributed symmetrically about
zero against such alternatives as slippage to the right. The Wilcoxon one sample
signed rank test is a typical nonparametric procedure used under these con-
ditions [4].

1. Assumptions and notations. Throughout it is assumed that X, ---, X»
are independently and identically distributed random variables with a con-
tinuous distribution function, F(z, 8) having a density function f(z, 6). 8 will
be a real valued parameter and under the null hypothesis Hqo:0 = 0.

If 2, ---, zy are the observations and ¥, ---, y~ are the absolute values
of the observations arranged from smallest to largest, then z = (21, - -+, 2x) is
defined to be the observed rank order where z; = 1 if y; is the absolute value
of a positive number and z; = 0 if y; is the absolute value of a negative number.
Thus, n = D1 2;is the number of positive observations and m = SV —z)
is the number of negative observations. Corresponding to the observed
y=(yr, --,yn) and 2= (21, ---,2y) are the random variables ¥ =
(Yy,---,Yy)and Z = (Z;, -+, Zy). There are 2" possible values of Z. For

a specified value of n there are i\[) values of Z. For n fixed the conditional

distribution of Z is that of the two sample problem [2] where the first popu-
lation has the c.d.f.

F(0,0) — F(—z,6)

F(z,0) = 7(0, 0) ’
0, r<0,

z=0,
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and the second population has c.d.f.

F(x,0) — F(0,0) -
Ft(z,0) = 1—F@©O,6 ° z20,
0: r < 0

Thus for fixed n the partial order problem is exactly that treated in [2] where
F(z) = F (z) and G(z) = F'(z). The previous results are not immediately
applicable, however, since it is not clear how to impose conditions on F(z, )
in order to get F(z, 8) and F*(z, 6) to satisfy the conditions of [2]. In Section 2,
the case of fixed n is considered. The notation 2'Lz denotes the following rela-
tionship: zi =z forallk =1,---, N except sandj (7 < j) and 2, = z; =0,
2; = z: = 1. This notation is also used if there exists z', -- -, 2’ such that
ZL2 - 2'Le, e.g., (1010)L(0101) since (1010)L(0110) and (0110)L(0101).

In Section 3, the partial order of the probabilities of two rank orders having
different values of n is considered. The notation 2’ Sz denqgtes 2z = 2 for k = 1,
-+, N and > holds for at least one value of k.

The following formula is used repeatedly:

(11) P(Z=2) = N:f Cee fiIlllLf“(yi,a)f““(—y,-,e) dy

0Sy1=<-+-SYNE®

The null hypothesis of concern is F(—z, 0) + F(z, 0) = 1, i.e., symmetry
about 0. Under Hy, P(Z = z) = 27" for each 2. An alternative of particular
interest is

F(z,0) = f (2) M2 402 gy 6>0.

All of the following results apply to this alternative hypothesis.

2. The case of fixed n.
THEOREM 2.1:

a) f(z, 0) = u(z)v(9)e*™*®
b) v(8) = 0
¢) u(z) = u(—z) >0
d) If z < y then a(x) < a(y)
e) b(e) >0
then 2'Lz implies A = P(Z = 2) — P(Z =2') > 0.
Proovr: Using (1.1) obtain

A = N! f e fA(yi,yf) I=Il [ (ys, 0)F ™ (—y:, 0) dyil
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where

i, 0)f(—y,,0)
Ay, _)=1_f(y; 15
o H(—=:, 05, )
=1 — exp {b(0)aly:) — a(—y:;) + a(—y;) — a(y)l}
The theorem is proved by showing A (y:, ¥;) = 0, which follows since the expo-
nent is negative due to the monotonicity of a(x).
TueOREM 2.2: If

a) f(z, 0) = f(x — 8) = f(6 — =)
b) If x > y and 6 > & then,

f(z,0) f(z,8)

9,0 8|~ 0
c) >0
then 2Lz implies A = P(Z = z) — P(Z =2') > 0.
Proor:
N N
A= N!f Coe fB(y;,yf){ II [f”‘(yk,0)f"”‘(—yk,0)]}[dek]
0<y;<---SYNS® ',;’2:;1, k=1

where B(y:, y;) = f(yi, 0)f(—y:, 0) — f(—y;, 6)f(y:, 6) and the proof is
completed by showing B(y:, y;) > 0. In assumption b let x = y;, ¥y = v:,
and § = —40 so that

< fyi,0) fly;, —6)
f(yi,0) f(ys, —6)
Now use f(x — 0) = f(8 — z), assumption a, hence
0 < f(y;— 0)f(y:+ 6) — f(y;+ 0)f(y: — 60)
= f(yi, Of(—yi, 0) — f(—y;, 0)f(y:, 0)
= B(y:, ¥i)-

3. The case of variable n.

TureoreM 3.1: Under the assumptions of Theorem 2.1, if 2'Sz, then
A=P(Z=2)—PZ=2)>0.

Proov. It is sufficient to consider only the special case 2 =z forall b = 1,
-++, N except k = 7 where z; = 1 and z: = 0. Then,

s=mf o [ewa{T e, 0r-u,0) d)

and the proof is completed by showing C(y;) = 1 — f(—y:, 0) X [f(y:, o)™ > 0.
Using the special form of f(z, 8), C(y:) = 1 — exp {b(0)[a(—y:) — a(y.)]} and
again the exponent is negative because of the monotonicity of a(y).

= fly; — 0)f(ys + 0) — f(y; + 0)f(y: — 6).
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TurEorEM 3.2: If
a) f(z, 0) = fo(x — 0) = fo(6 — x)
b) If x > y > 0 then fo(y) > fo(z)

c) 6>0
then 2’ Sz implies A = P(Z = z) — P(Z =2') > 0.
Proor:
N N
a=mf . . [b@ {H (e, OF ™~ o>1} ey
0=y1S -+ *SUNS® 7:;1,6 k=1

and it is sufficient to show that D(y;) = f(y:, ) — f(—y:, 8) > 0. First, using
assumption a, D(y:) = fo(ys — 0) — fo(—y: — 0) = fo(ys — 0) — fo(y: + 0).
Now if y; > 6 the result follows from b, since y; — 6 < y; + 6. If y; < 6 the
result follows from b when we write D(y;) = fo(0 — y:) — fo(y: + 6).

Remark 1. In Theorem 3.2 writing f(z, 8) = fo(x — 6) allows f(z, 8) not only
to be translations of the Hy but also other changes, such as changes in scale,
can occur.

Remark 2. The assumptions of Theorem 2.2 imply those of Theorem 3.2 but
not conversely. If in b of Theorem 2.2 weset 6 = 0,20 =z + y,and Q) < y < z
we obtain b of Theorem 3.2. The Cauchy density is a counter example of the
converse.

4. Some partial orderings. If the assumptions of Theorems 2.1 and/or of
2.2 and 3.2 hold, then the following diagrams are obtained:

N=1
1-0
(where P(Z = 2) > P(Z=72)=2—>12)
N =2
11—-01—10—00
N=3
111 - 011 —- 101 — 110
N N
001 — 010 — 100 — 000
N =4
1111 - 0111 — 1011 — 1101 — 1110
, N
0110

a N
0011 — 0101 1010 — 1100
N
1001
N
0001 — 0010 — 0100 — 1000 — 0000
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Now consider the uniform distribution f(z, ) = 1for6 — 1 <2z < 6 + %
and 0 otherwise, 0 < ¢ < . If n’ is the length of the last run of 1’sin z or n’ =
the number of the positive observations greater than the maximum of the absolute
values of the negative observations, then

’

(41) PZ=2) =% (]f) (3 — 0 (20)°

2=

To obtain (4.1), begin with

P(Z = 2) = ), P(Z = z|1 observations >1 — 6)
=0

X P(i observations >§ — 6)
and use
P(Z = z|i observations > % — ) = 27%?,

P(i observations > 1 — 9) = (7) (20)'(1 — 20)™ .
Holding 6 fixed, P(Z = 2) is an increasing function of n/, and otherwise does
not depend on 2. Thus, the most powerful rank order tests depend solely on »’.

b. A statistical application. For the normal alternative hypotheses, mentioned
at the end of Section 1, several test statistics have been proposed:
a. On intuitive grounds Wilcoxon proposed the statistic

N
Tw = Z; 2.

b. Fraser [1] showed the locally most powerful rank order test is of the form
Tr = > Y1 2E(Xy:) where Xy;is the ith order statistic from the chi
distribution with one degree of freedom.

Both of these statistics are of the form 7 = Z’Ll 2;a; where the a; form an
increasing sequence. It is easily verified that if 2’Lz and/or 2'Sz then
T(z) > T(2'). Thus statistics of this form take full advantage of the results
of this paper, i.e., using these statistics the known more probable rank orders
are put into the critical region first.

6. Normal slippage. The theorems of Sections 2 and 3 do not help in the order-
ing of P, = P(Z = (0,0, 1)) and P, = P(Z = (1, 1,0)), for normal alterna-
tives. If P, > P, then the partial order for N = 3 given in Section 4 becomes
the simple order:

111 — 011 — 101 — 001 — 110 — 010 — 100 — 000

TueoreM 6.12 If Xy, -+, Xv(N = 3) are independently and normally dis-
tributed, each with mean 6(>0) and wvariance 1, then A = P(Z =2) —

2 M. Sobel proved this result for N = 3 at the 1958 Summer Statistical Institute sponsored
by the National Science Foundation.
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P,(Z = Z) > 0 where z and 2’ are identical except 2y = 2z, = 23 = 0 and
Rl = 29 = 23 = 1.
Proor: Using (1.1)

= —(2]:)!3/2 f e f{H % (y:, o)fl—z.'(_yi , 0)]} [H dyi:l
X {exp [— % (yi+ w2+ 95+ 36%)]} X [ W) k)

Now make the transformation y; = w1, y2 = w1 + we, 3 = Wy + wy + w;,
and y; = w; for s = 4, --- | N. The Jacobian is 1 and the region of integration
becomes0 < w; S wy S ws < -+ < wy < oo ford = 1,2,3;and Doy wi < ws.
Then

- (_2‘]1:-1)"%[ o f{g [ (we, 0)F 5 (—wi, 0)]} [g dm]
X {exp [— % (wi + (w1 + we)® + (wr + w2 + ws)*+36)]}

x [e(Owa—wl) — eo(wl—ﬂ)3)]

The above integral is equivalent to the following integral, where the region of
integrationisO S wy S wy S wy- - S wy < 0,0 = wy < wy,and Doy w; < wy.

b [ [ [T 07—, 01 [ T ]

=1

X {exp [— 3 (’wl + (w + wz) + (wr + we + ’wa)2 + 302)]
—exp [— % (ws + (ws + w2)* + (w5 + wp + w)® + 36°)]}

X [eo(wa—wl) _ eo(wrwa)]

For the region of integration each of the factors in the above integrand is clearly
>0 except for the { }. Toshow{ } > 0, prove the equivalent inequality

ws + (ws 4+ we)® > wi + (wy + we)? = wy(ws + we) > wi(w + w,)

which is clearly the case since w; > w, > 0.
Theorem 6.1 implies a simple order for the five most probable rank orders
against normal slippage.
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