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1. The group alphabet. When a piece of information, or letter is transmitted
over a symmetric binary channel [14], the letter is presented to the channel in
the form of a sequence of n binary digits. Because of noise en the channel, there
is a positive probability p that a transmitted symbol will be received in error,

that is, a transmitted 0 will be received as 1 or transmitted 1 received as 0. It -

is assumed that 0 < p < %, and that the noise on the channel operates inde-
pendently on each symbol that is presented for transmission. If the collection
of all distinet pieces of information—the alphabet—consists of K = 2* letters,
it is customary to take » > k, and in some manner use the additional digit
positions to ‘“‘correct” errors in transmission. Slepian [14] has introduced the
n-place group alphabet, or, briefly, the (n, k)-alphabet, and an associated de-
coding scheme. The 2" possible binary sequences form an Abelian group B,
wherein the group operation is addition modulo 2 of vectors given by the se-
quences. An (n, k)-alphabet is a 2°-letter n-place binary signaling alphabet
whose letters form a subgroup of B, . )
Let us designate the letters of the alphabet by

Ug=1I=(000:--0),U,Us,-++,Us,n=2"—1.
The group B, can be developed according to the alphabet and its cosets:

I=U0=Lo, Ul, U2, Uu;

L, , L+ U, L+ Uy, --- L+ U,,

(1) L2 ) L2 + Ul, L2 + UZ) e L2 + Up,
Lv ) Lv+U1, Lv+U2, e Ly'l' UM,

where » = 2" — 1, and L, is an n-place binary sequence which has not ap-
peared in cosets led by Lo, L, - -+, Liy . The group elements L; are called
coset leaders.

The weight w(T;) of an element T'; of B, is defined as the number of ones in
the n-place binary sequence T'; .

Because of the group property, any coset is repeated, with elements in a
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114 R. C. BOSE AND ROY R. KUEBLER

different order, if the coset leader is replaced by any other element of the coset.
It is then agreed that L; will be taken as that element (or any one of these
elements) of the coset I whose weight is least. The detection scheme is then
the following: if the element of B, which is received from the channel output
lies in column 7 of the coset array, the detector prints the letter U, .

The following is an example (kK = 3, n = 5) of such an array.

I U1 Uz U3 U4 U5 U6 U7
Alphabet: 00000 00111 11101 00011 11010 00100 11110 11001
(2) 10000 10111 01101 10011 01010 10100 01110 01001
Cosets 01000 01111 10101 01011 10010 01100 10110 10001
00010 00101 11111 00001 11000 00110 11100 11011
For such a code, given p and setting ¢ = 1 — p,

(83) @i = Pr(transmitted letter U, be correctly produced by the detector)

_ w(Ly) n—w(Ly)

= 2 p" g,
Since p“q"" is a monotonically decreasing function of w, one sees the motiva-
tion for taking as L; an element of minimal weight in coset .

As Slepian has observed [14]: “Two important questions regarding (n, k)-
alphabets naturally arise. What is the maximum value of @, possible for a given
n and k and which of the - - - different subgroups [alphabets] give rise to this
maximum ¢;? The answers to these questions for general n and k are not known.
For many special values of » and k the answers are known.” The present paper
is directed towards developing a geometry which can give an additional tool
for use in studies on group alphabets. To the reader interested in other aspects
of the coding problem there may be cited, as representative of analyses of the
problem and methods of approach, papers of Hamming [10], Gilbert [8], Golay
[9], Elias [5, 6], Reed [13], Lloyd [11], Calabi and Haefeli [4], MacDonald [12],

Fontaine and Peterson [7].

2. An algebra of binary sequences. We introduce an algebra of binary se-
quences, defined as follows. The elements of the algebra are the n-place binary
sequences Ty, Ty, -++, Ton, where T; = (aj, @2, ***, @js), €ach aj; being
either zero or one. In the present case, all letters of the alphabet and all ele-
ments of cosets are binary sequences of this nature.

Addition is defined by

(4) T;"I‘ TJ= (ail-l_ajl,az"l_l-aﬂ;"';ain-l_ajn)’

where the addition is vector addition modulo 2. This addition clearly has all
the usual properties: commutativity, associativity, inversion. We note a special
property of this addition: for any n-place binary sequence 7, 27 = T + T =
(000 ---0), the null sequence.

The product T.T; is defined as

(5) T:iT; = (Ga@j1, Gixjz, =+ * , Ginljn) ;
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that is, the coordinates of the product are the products of matching coordinates
of the factors. This multiplication of course has all the usual multiplicative
properties: commutativity, associativity, distributivity. However, inversion is
not satisfied; that is, division is not unique. We shall not perform the division
operation. Since

Gt = 1 when and only when @, = a;, = 1,
B 0 otherwise,

a special property of the multiplication in this algebra is that every element is
tdempotent; that is, for any n-place binary sequence T,

(6) T = T.

Two particularly useful properties follow from (6). For any two sequences
T, T,,

(1) (Ti+ ThTe)(Te + TiTe) = ThT: + TiTe + TiT: + TiT: = 4TiT: = 0,
(8) (T, + To)(T\T:) = TiT, + T\T; = 2T:T: = 0.

Consider the weight w(T') of two binary sequences T'; and T';, where w(T)
is as defined in Section 1 (the number of unities in T'), and let us investigate
w(T; + T;) and w(T.T;). An example of these T’s could be

T,:(1 1 111000 0 0),

T,:0 01 11111 0 0),
T,+T.:(1 1 000111 0 0),
TT,: (0 01 1 1000 0 0).

T.T; has unities only in those positions occupied by unities in both 7'; and T';,
so that w(T';T';) is the number of unit coordinates common to T'; and T'; . These
are precisely the unit coordinates yielding zeros in the sum 7; + T';. Thus we
have the following theorems.
TueoreMm 1. w(T:T;) = min [w(T;), w(T;)].
Useful corollaries to Theorem 2 are the following.
CororLrary 2.1. If w(T.T;) = w(T.Tx) = w(T:), then w(T;T%) = w(T;).
Proor. The theorem gives

(9) w(T; + Ti) = w(T;) + w(Tr) — 2w(T;T%).
But also
w(T; + Ti) = wl(T: + T;) + (T: + Th)]

IIA

w(T; + T;) + w(Ts + Tw)

w(T:) + w(T;) — 2w(T:T;) + w(Ts) + w(Tw) — 2w(T.Tx)
w(T;) + w(Ty) — 2w(T,).

Applying this result to (9), we obtain immediately w(7T;T%) = w(T;).

I

Il
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CoroLrarY 2.2. If T; = T.T; and w(T;) = w(T;), then T; = T;.
Proor. From the given conditions we have

= w(T:) + w(T:) — 2w(T:) = 0.

That is, T'; 4+ T;is the null sequence, whence T; = T';.
TuroREM 3. The necessary and sufficient condition that w(T;T;) = w(T.) is
that T.T; = T;.

" Proor. If T;T; = T;, then obviously w(T:T;) = w(T:). Conversely, let
w(T;T;) = w(T;). Before applying the condition, we have from the definition
of multiplication that T;T; has zero for each coordinate which is zero in T';.
The remaining coordinates of T;T; are those which in T'; are unities. But if
w(T;T;) = w(T;), then these coordinates must be unities in T;T'; . Hence, the
coordinates of T;T; are identical with those of T';, that is, T;T; = T;.

3. A geometry of binary sequences. Application is made of the notions of
finite projective geometry introduced by Bose [1] and used by him and others
in the development of incomplete block and factorial designs (for example,
[1] and [2]).

The group alphabet in which we are interested is composed of the null letter
I =(000---0)and g = 2° — 1 nonnull letters, Uy, Us, ---, U,, which
are generated by any & independent sequences, say

U, = (au,alz,ala, cee, Oin),
(10) U2=(a21,a22’a23""’a2’n)’
Ur = (a1, @iz, Gaz, *** 5 Gkn),

where the a;; are elements of the Galois field GF(2) and not all zero. The general
nonnull letter U of the alphabet is thus

(11) U=MUi+ N0+ -+ + MUy,

where A1, Ag, -+, A are elements of GF(2), not all zero. For example, the
nonnull letters of the alphabet (2) can be taken as:

U, = (00111) = 1(Uy) + 0(Uz) + 0(Us),
Uz = (11101) = O(Uy) + 1(Us) + 0(Us),
Us = (00011) = 0(Uy) + 0(U2) + 1(Us),
(12) U, = (11010) = 1(U:) + 1(Uz) + 0(Us),
Us =‘(00100) = 1(U1) + 0(U:) + 1(Us),
Us = (11110) = o(U,) + 1(U:) + 1(Us),
Ur = (11001) = 1(U1) + 1(U:) + 1(Us).

Our geometry must take into account these 2% — 1 letters, and also all the re-
maining 2" — 2* possible nonnull binary sequences.
Consider a (topological) space @ consisting of n distinct points Y1, Y, -+,
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Y, , where the point Y; of @ is considered to correspond to the -th position in
an n-place binary sequence. In other words, @ is a space of positions. Each binary
sequence T'; = (@j1, @j2, *** , @jn) corresponds to a unique subset of 2, namely,
the subset of those positions which are occupied by unity in 7';. For example,
if n = 6, the binary sequence (011001) corresponds to the subset (Y3, Y5, Ys)
of Q. Thus, Y, is a member of the subset Q; corresponding to T'; if and only if
a;; is unity. Conversely, given any subset Q; of @, we can at once write down the
corresponding binary sequence T'; by taking unities in those positions which
correspond to the elements of Q;, and zeros in the other places. For example,
ifn="7and Q; = (Y1, Y2, Yy, Ys), we have at once T'; = (1101010). Thus
the 2" binary sequences have (1,1) correspondence with the 2" distinct subsets
of Q. In particular, the whole space @ corresponds to the sequence £ = (111
-+ 1), the unit element of the ring algebra introduced in the preceding section,
and the null set corresponds to the sequence I = (000 --- 0), the zero ele-
ment of the ring.

As any other sequence, the letter U; of the alphabet (11) corresponds to
the Q-subset of those positions in which U; has unities. We shall denote this
subset by @1(U;). We shall denote by 2(U;) the complementary set of positions
(which are occupied by zero in U;). These two sets are disjoint, and their union
gives the whole space Q. Referring to (12) for example, we have Q,(U;) =
(Yl, Yz, Ys) and QQ(U7) = (Ya, Y4).

For any k-place sequence y:, ¥z, -, yx of elements of GF(2), we define
the subset @(y1, ¥2, ---, ¥x) by

(13) @1, g2, 005 Ye) = B(U) N Qy(T2) N -+ N Ry, (Us).
For example, referring again to (12), we have
Q(1,0,1) = @(Uy) N (Us) N 2 (Us)
= (Y3, Y, Y5)N (YN (Ys, Ys)
= (Y.

As shown by the definition (13), an element of @ is a member of Q(y;, ¥,
-+, y) if and only if it is a position which is occupied by y1in Uy, y2in Uy, - - -,
Y in Uy . Each such position will then be occupied by A1 + Neyz + -+« + My
in U = MUy + MUz + - -+ 4 MUi . Thus, if in our preceding example, where
Q(1,0,1) = Y,, we consider (A1, A2, A3) = (1, 1, 0), we have

My + Nz + Ny = 1(1) + 1(0) + 0(1) =1,
which is seen to be the digit occupying the fourth position in

Hence, if
(14) Myt Ay -+ My #Z 0 (ie., =1),
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then each element of Q(y1, ¥2, *-*,¥s) is a member of the set & (U) corre-
sponding to U = MUy + MUz + -+ + MUi ; otherwise, each element of
Qy1,¥2, **+ , Yx) is a member of the complementary set Qo(U).

We can assume that there is no position which is occupied by zero in every
one of Uy, U,, -++, Uy, for otherwise this position would be occupied by zero
in every letter of the alphabet and would therefore convey no information.
Hence the set 2(0, 0, - -- , 0) is always null, and we shall neglect it. Thus there
are 2" — 1 different sets @(y1, vz, - - - 7yk)’ (?/1,?/2, Ty Yk) # 0,0, ---,0).
Any two distinct sequences ¥1, ¥z, + -+, yx will differ as regards at least one
element, and hence the two sets @(y1, ¥z, -+ -, yx) will differ with respect to
at least one factor in (13), say the u-th. Then we shall have ©,(U,) in one
case, and Q(U,) in the other. These two sets are disjoint, and hence so are the
two sets Q(¥1, ¥z, '+ , Yr), since each is a subset of each of its factors. Further-
more, since each position is clearly defined in every U;, every element of Q is a
member of some Q(y1, ¥z, * -+ , Yx); one need only write down for y,, e, * -,
yx the digits occupying the corresponding position in Uy, Uz, -+, U [in
(12) for example, Y; is an element of (1, 1, 0)]. Hence, as (y1, ¥z, *** , k)
runs over the 2 — 1 possible sets of values, the sets Q(y1, %2, - - - , ¥x) exhaust
Q. Thus the sets @(y1, Y2, - - , Yu) are disjoint, and their union gives the whole
space.

From what has been stated concerning (14) above, it is clear that the set
@ (U) corresponding to U is the union of all the (disjoint) sets @(y1, y2, *- -,
yx) for which (y1, y2, - -, yx) satisfies (14). If n(y1, e, - -+, y&) denotes the
number of points in @y, ¥z, -+, Y&), then, since the sets Q(y1, y2, -, ¥r)
are disjoint and exhaust @, > n(y1, 2, -+* , ¥») = n, the summation being
over all the 2° — 1 values (y1, ¥z, -+, ¥x). Also, for the weight w(U) of U,
as defined in Section 1, we have

(15) w(U) = Sons, ¥s, -+ » )

Wherei indicates summation over all those values (y1, ¥z, - ** , yx) satisfying
Myr + Ay + -+ My = 1L

Consider now the finite projective space PG(k — 1,2), and to the point
P = (4h,%:, -, ys) of this space associate the set Q(y1, y2, -, yz). Let the
points of PG(k — 1, 2) be Py, Pe, -+, Py, p = 2* — 1, where P; = (v,
Yei, 5 Yrs). If we define the n-measure of the point P; as n(P:) = n(yu,
Yoi, *** , Yri) = Mmi, then there are n; points of Q which constitute the set
associated with P;. These points we may now rename as Py, Py, -+, Py,
and identify with the point P; taken n; times. Thus @ may be considered to
consist of the points Py, Py, --+, P, the point P; being taken with a multi-
plicity n;. If in particular n; = 0, then P; does not belong to Q. It is useful
to institute a logical distinction between geometric points and Q-points. Each
P; constitutes a single geometric point, but counts as n; = n(P;) Q-points.
The total number of geometric points is p = 2¥ — 1; the total number of Q-
points is 7.
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The points (1 , ¥2, -+, ¥x) which satisfy (14) are the points not lying on
the (k — 2)-flat

(16) My + Ny + oo 4 Ny = 0.
This (k — 2)-flat we shall call the U-associated flat, where
U=MU14+ N0+ -+ + MUk

The set @(U) corresponding to U is then the union. of the sets Q(y1, y2, -~ -,
i) associated with those points (y1, y2, -+, yx) of PG(k — 1, 2) which do
not lie on the U-associated flat. We shall call such points U-associated points.
Hence, from (15)

an w(U) = the number of U-associated points in Q.

This result is a special application of a property studied in another connection
by Bose and Burton in [3].

As is clear in all the preceding discussion, the ordering of the points in Q is
completely immaterial. However, for notational convenience, and to fix ideas,
we shall ordinarily take Y;, Y2, -+, Yo = Pu, P, -+, Pu,, Pa, Pa,
sy, sz, ey, P,.l, P,,z, ey, P,m“. The subset (Pil, Piz, ey, Pini) maybe
represented by P:; it must be understood to be empty when n; = 0. The
correspondence between the points of @ and the generating letters U, U,,
-+« , Uy of the alphabet can be exhibited in the following array.

Q-point
Letter
Py Py - Puy Pu Pn -+ Pouy - Py Pp P;m"
U Yu Yo o Yu Y2 Y2 v Yz o Y Y 0 Y
(18) U. Y1 Yo Ya Y Yoo 0 Yoo 0 Yo Yo 0 You
Us Y1 Yt v Y Ys2 Ys2o ot Yz vt WY Yttt Ysu
Ue | Y Y - Y Y2 Yke Y2 o Yk Y 0 Ym

This is precisely the array (10) with respect to the U’s. Each U is given by a
horizontal sequence of n digits. But now we can see the columns of the array
as the sets of homogeneous coordinates of points in PG(k — 1, 2). Thus, Uy,
U, -+, Uy, and hence all the letters of the alphabet, are completely defined
by the ordered set of Q-points. Hence the study of group alphabets can be pur-
sued through the study of sets @ composed of points of PG(k — 1, 2).

We should call attention at this point to the correspondence between our
geometric representation and the group representation of Slepian. Slepian [14]
employs the isomorphism of B, , the group of n-place binary sequences under
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the operation of addition modulo 2, with the abstract group C, generated by =n
commuting elements of order 2, together with the isomorphism of the (n, k)-
alphabet (subgroup of B, of order 2*) with C%. Rows 2 through (k + 1) of
Slepian’s modular representation table for the group Cj give, columnwise, pre-
cisely the homogeneous coordinates of the points P; of PG(k — 1, 2). When
Slepian forms an (n, k)-alphabet by choosing 7 columns (including possible
repetitions) of the modular representation table, the rows 2 through (¢ + 1)
of the resulting array is, to within possible permutation of columns, precisely
our representation of . Our measure ng for the point P; is Slepian’s quantity
dg , both indicating the number of times the B-set of coordinates is taken from
PG(k — 1, 2), or from the modular representation table, for forming the
(n, k)-alphabet.

Obviously, if P is outside Mgy + Aayz + - -+ + Myx = 0 for any wu, it is
outside the flat for all u. That is, all repetitions of P;in @ are U-associated points.
On any (k — 2)-flat in PG(k — 1, 2) there are 2" — 1 points, so that there
are (2° — 1) — (2 — 1) = 2* points of PG(k — 1, 2) lying outside the
flat. Hence the letter U = MU; + MUz + - -+ 4+ MUi is uniquely defined
by the Q-points contributed by the 2*~' geometric points lying outside

Myr+ My + -+ Ny =0

in PG(k — 1, 2). As suggested in the remark preceding (18), we shall use
exponent notation to indicate multiplicity, setting

(19) U= p:‘lup?zsz e P"."I-’q , 7 = 2k——1.
The order of the P;’s in (19) is clearly of no importance, nor are the exponents
essential, since the symbol P; by itself specifies that U has unities in those

positions occupied by Pi, Py, -+, P, in the ordered sequence of Q-points
Y,, Yz, -+, Y,. Thus there is a (1,1) correspondence between a letter

U=MU+ 20U+ -+ + MU
and the set of geometric points
(20) (PyyPsy -+ Py,)
which lie outside the (k — 2)-flat Myr + Naya + -+ + Mg = 0.

Let S represent the complement of the set S with respect to the entire space,
here PG(k — 1, 2). From (20) we have the useful correspondences:

) q: {13,'1 , Piz, ey, P,'ﬂ, lymg outside M1 + Azyz + -+ Nl = 0},
(21) U: {P«i lylng on)\lyl + A2y + -+ Nl = 0}
or stmply Myr + My2 + -+ 4+ My = 0.

The letter U can thus be viewed in any one of the following ways.
(i) U is a sequence of n binary digits. As such, U is an element of the ring
algebra introduced in Section 2.
(ii) U is the set @(U) of U-associated points in Q. As such, U is given by (19).
(iii) U 4s the set of geometric points of PG(k — 1, 2) lying outside the U-asso-
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ciated flat. In this view, the multiplicity n; is understood as attached to the

point P;, and U is expressed by (20).
For example of this geometry, we shall consider again the alphabet in (2).

Herek = 3,n = 5, PG(k — 1,2) is the projective plane PG(2, 2), and (k — 2)-
flats are lines. The situation is presented in Figure 1.

Ui:yp =0, Us:yp+ =0,
Us: 4o =0, Us: +y: =0,
Us: =0 Us: Y2 + y3 = 0,

Uiy + 9+ ys = 0.

One alphabet design assigns measures n(P;) = n; to the points P; as shown in
the following table. The subsets of associated Q-points are then as indicated.

Geometric points: P, P, P; Py, Py P¢ P,
n(P): 0 2 0O 1 1 0 1
Associated subsets of @: null ¥;, Y, null ¥; Y null Y5

Taking points of € in column form, as in (18), we have

POSitiOIlS . Y1 Yz Ys Y4 Ys
Geometric points: Py Py Py Py P s
o o0 1 1 1

241 1 1 0 1
0

0 0 1 1

PI: (liolo)

US - Uz
Ug

Pa: (1,0 Ps:(,0,1)
— Py
Uz
Us
U
P,:(0,1,0) Ps: (O,1,1) P5:(0,0/)
Fig. 1
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Then
U, = (00111), U, = (11101), U; = (00011),

and the alphabet follows as in (12). The various identifications of the letters
are as follows.

Binary |Set of geomet- Set- of
Letter U = M Ui +2U:+ N Us R . associated
sequence ric points .
Q-points

Uy = 1(Uy) + 0(U:) + 0(Us) | (00111) | (P,P.PsP;) | PiPiPiP}
U, = 0(U1) 4+ 1(Us) + O(Us) | (11101) | (PoPsPePy) | P3PiPsP;
U; = O(Ul) + O(Uz) + 1(U3) (00011) (P3P5P6P7) PgP%PgP;

(22)  Us= 1(Uy) + 1(Us) + 0(Us) | (11010) | (P.PyPsPs) | PIPiPiP}
Us = 1(U1) 4+ 0(U:) + 1(Us) | (00010) | (PiPsPuPs) | PiP3PiPg
Us = O(Uy) + 1(Us) + 1(Us) | (11110) | (PyPsP.Ps) | P3P3PiP
Ur = 1(U1) + 1(Us) + 1(Us) | (11001) | (PiPoPsP7) | PAP3P3Py

To reiterate the meaning of the exponent notation relating to Q-points, we note
the example

U, = PiPiPiPy = PyPnPs .

Consider now the binary sequences which are not letters, that is, the sequences
which are members of cosets. As we saw when the Q-set was introduced, every
binary sequence is in correspondence with a subset of Q. Hence each nonletter
can be identified with a subset of Q-points; as in the case of letters, we shall
call the points of such a subset the associated points of the sequence. But the
Q-set corresponding to a nonletter does not necessarily include all n; repetitions
of P; as in the case of a letter U. Thus, for example, in the array (2), L =
(10000) = Py , or again, L + Us = (10000) + (11110) = (01110) = PpPuPs .
Hence, in general the binary sequences which are not letters can not be identi-
fied with sets of geometric points as can the letters. Of course there will be special
cases in which the Q-subset defining a nonletter will contain all n; repetitions
of P; for all 7 in the subset, and indeed these special cases as they affect coset
leaders L are of particular importance in design investigations.

Some observations should be made on the relation between operations per-
formed in the algebra of binary sequences and operations performed on corre-
sponding sets. By the definition of multiplication (5), 7;T; has unities in just
those positions which are occupied by unities in both T; and T'; . Hence T.7T; is
defined by the subset of Q-points associated with both T; and T'; . Thus, when
regarded as sets of Q-points,

(23) T;’Tj = T,n Tj .



GEOMETRY 1IN INFORMATION THEORY 123

By the definition of addition (4), T; + T; has unities in those positions occu-
pied by unities in one of T; and T ; but not in both. Hence T; + T, is defined by
those associated points of 7'; and T; which are not common. Thus, regarded
as sets of Q-points,

(24) T:+ T;=T; UT; —{T.N Tj}.
When each member of the pair T;, T; is a sequence whose set of associated
Q-points includes P, Py, -+, Pi, whenever it includes any P, [such se-

quences are the letters U and the special cases of nonletters mentioned above],
then (23) and (24) apply with the sequences regarded as sets of geometric
points (P;).

4. Geometric conditions in a group alphabet. As shown in the preceding
section, the construction of a binary signaling (n, k)-alphabet is equivalent to
the selection of a set @ of »n points from PG(k — 1, 2), the geometric point P;
appearing 7; times in Q. The selection of @ is in turn equivalent to the distribu-
tion of a total measure n over the points of PG(k — 1, 2), whereby the non-
negative integral measure n(P;) = n; is attached to the point P;,

I3
(25) dni=mn, p=2"—1.

=1
We define the n-measure N; of the j-th (k — 2)-flat U; of PG(k — 1, 2) as
(26) N.i=z:ni7 J=1,2,---,4,

where Zb‘ indicates summation over the points P; which lie on U; . Since
every point "of PG(k — 1, 2) is on 2™ — 1 (k — 2)-flats, summing (26) on j
gives

(27) 2N = (2= 1)n.

Consider now any point P;. Any point of the space other than P; determines
with P; a line, and there are as many (k — 2)-flats “on” a line as there are
points on a (k — 3)-flat [by duality], namely, 2°° — 1. Hence each point
of the space other than P; lies on 2° — 1 of the (k — 2)-flats passing through
P; . Thus, if we sum (26) over the (k — 2)-flats containing P;, we obtain

2N = (@7 = n+ 27 = 1(n - n)
(28) Fe
= (2" = n + 2" %n,, i=1,2 ",

where ) p, indicates summation over those j indexing the (k — 2)-flats which
pass through P;.

We shall call the space of the points P; and (k — 2)-flats U; the primary
space. Corresponding to this primary space is the dual space, in which the point
T, corresponds to the (k — 2)-flat U; of the primary space, and the (k — 2)-
flat ; corresponds to the point P; of the primary space. Each space is a projec-
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tive space PG(k — 1, 2). In the dual space we define a w-measure which assigns
to the point T; the integer w;, where

(29) w.’f=n—Ni7 j=1,2,"',}1-

By (19), the weight w(U;) of the letter U; is i, + n4p, + - ot (= 21,
the sum of the n-measures of all points P; lying outside U;. Hence,

(30) w(U;) =n — N; = wj, i=1,2 - ,p

That is, the w-measure of a point T in the dual space is the weight w(U) of the
letter whose associated flat U in the primary space is the dual of T. If we sum
(30) on j, applying (27), we obtain

u u
(31) >wU;) =2 w;= (2= 1n— (2" = 1)n = 2"
j=1 i=
This is Slepian’s Proposition 6 [14].
Since the distribution of the measure n assigns nonnegative integers to the
u = 2¥ — 1 points of the primary space, it is convenient to express n as ut + 7,
and set n; = ¢t + §;(8; = —t). Taking into account that n = k, we have

(32) n=(2" - 1)t +y,
where ¢ is a positive integer or zero, and

_ia_ —1)0’17')k,k+17°,2k—3 1ft>0,
v o kk+1,---,2°—3 ift = 0.

=1

This representation has the advantage that, for given £, it reduces the problem
of constructing (7, k)-alphabets for all » to the problem of constructing 2* — 1
v-classes of (n, k)-alphabets.

Since to each letter U there correspond 2°~' points of the primary space
[ef. (19), (20)], the weight w(U;) of Uj; is of the form

(33) w(U;) = 2°7% + b;,

where b; is the sum of the §;’s over the points corresponding to U, .

Now, an essential feature of the code associated with an (n, k)-alphabet is
the following. When the letter U is transmitted, the detector will correctly
report U if and only if the errors in transmission occur in precisely those posi-
tions occupied by unity in a coset leader L. Hence, if all possible n-place se-
quences containing s unities serve as coset leaders, then the code will correct
all s-tuple errors. If the number of weight-s sequences occurring as coset leaders

is less than <Z') , say a, then the code corrects a s-tuple errors. The advantage

of maximizing the number of lowest-weight sequences serving as coset leaders,
discussed in Section 1 with reference to maximizing the probability of correct
detection, now appears again, this time with reference to maximizing the num-
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ber W such that all W-tuple (and lower order multiple) errors are corrected by
the code.

As shown in Section 3, every n-place sequence, whether letter U, coset leader
L, or interior coset member L + U, is identified by certain Q-points associated
with the sequence. Since addition is modulo 2, the binary sequence L + U con-
tains a zero in each position identified with an Q-point which is an associated
point of both L and U. If w(L) = g, there are g Q-points associated with L.
The class of Q-subsets representing all possible sequences of weight g embraces
all possible combinations of g points out of the n Q-points, including any set of
g Q-points associated with a letter U. Now, all weight-g sequences can be coset
leaders if and only if w(L + U) > w(L) for all U’s and all weight-g L’s. Hence,
in order that all weight-g sequences can serve as coset leaders, it is necessary
and sufficient that g < 3w(U;) for all j. Define

(34) W = the largest integer such that all sequences of weight
<W can serve as coset leaders.

Then W is the largest integer such that there exists an (n, k)-alphabet in which
w(U;) > 2W for all j, whence the well-known condition w(U;) = 2W + 1
for all j. Considering the form (33) of w(U;), we set

(35) W=2""%+e,
where e s the largest integer such that there exists an (n, k)-alphabet in which
(36) wU;) 2 2W +1=2""t+2 +1 forallj.

For given k, v, and e, we confine our attention to the construction of only
those (n, k)-alphabets which satisfy (36), that is, (n, k)-alphabets which
provide W-error-correcting codes. Such codes have been termed largest-nearest-
nesghbor-distance group codes. There has been no demonstration that this class
includes that code which has the smallest probability of incorrect decoding for
all values of p < 1/2, but the class does include such a code for sufficiently
small values of p, and the class has the desirable feature of maximizing the multi-
plicity of error which will be completely corrected. For such an alphabet, the w-
measure in the dual space must, in view of (30), satisfy

(37) w; = 2W + 1 forallj.
Set
(38) w; = 2W + 1 + d;,

where d; is a positive integer or zero. We now define as D-measure a measure which
assigns nonnegative integers d; to the points T; of the dual space. (It will be
unambiguous to refer to an individual d; as the D-measure of the point T;,
and to the sum of the d’s for all points on a c-flat . as the D-measure of . .)
Since (37) is sufficient as well as necessary for an (7, k)-alphabet to give a W-
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error-correcting code, provided the w-measure is otherwise consistent with an

(n, k)-alphabet, it follows that any D-measure which is consistent with an

(n, k)-alphabet will provide a sufficient condition for the alphabet to give a

W-error-correcting code. The conditions on the D-measure are readily identified.
First, if we sum (38) on 7, applying (31), (32), and (35), we have

27 = (2" = 1)@W + 1) + 2 d;,
2N = Dt = (2 - 1T+ 20+ 1) + 2 dy,
(39) 2odj =2y — (2 = 1)(2 + 1).

Next, if we sum (29) over those 7 which index the points T; lying on that
(k — 2)-flat 7; which is the dual of the point P; of the primary space, we obtain

2w = (2" = 1)n — 2N,
Ty P;

where D_; indicates summation over those j indexing the elements which are
“on” £ Then by (38), (28), (35), and (32) we have

T = DEW+ 1) + 2d;= (27 = Dn — 7= Dn—27n,,
(2 = 1)@+ 2+ 1) + 2 d; = 277(2F — 1)t + 4] — 27,

(40) ni=1t+7vy —2(2 + 1) — (/25 [ d; — (2¢ + 1)].

Since 7, t, v, and e are integral for all 7, (40) shows that

(41) > d; =2 4+ 1 (mod 2°%) for all 7.

For defining uniquely an n-measure over the points P; of the primary space,
the equalities (39) and (40) are clearly sufficient as well as necessary, provided
that all the n; given by (40) are integral and nonnegative. We have thus es-
tablished the following theorem.

TureoreM 4. Given any k, v, and e, where v and e are functions of n in accord-
ante with (32) and (35), respectively, the necessary and suffictent conditions that
a D-measure uniquely define a y-class of n-measures over the points P; of PG(k — 1,
2), and thence define, uniquely to within ordering of Q-points, a y-class of (n, k)-
alphabets which give W-error-correcting codes (where W ts the largest integer for
which an (n, k)-alphabet exists) are

(1) idj=2"‘ly— 2F—=1)(2e+1), uw=2"-1,
j=1

(2) > d; =2+ 1 (mod 2¥%) for all 4,
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(3) n; = 0 for all 7,

where n; s given by (40).

If Theorem 4 is restated in terms of n, W, and the w-measure, it is the equiv-
alent of Slepian’s statement at the end of Section 2.9 of [14]. Similarly, such
restatement of Theorem 6, below, taken in conjunction with Corollary 5.1, is
the equivalent of Slepian’s Proposition 7. In addition to giving unity to the
geometric approach and providing tools for later geometric work, the present
propositions, for any fixed k, organize matters relating to an infinite number of
n-values into just 2¥ — 1 v-classes.

The congruence condition in Theorem 4 is a special case of a more general
property given by the following theorem.

THEOREM 5. Any D-measure satisfying Theorem 4 has the property

(42) > d;= 2 + 1 (mod 2°

for all c-flats . in the dual space PG(k — 1,2),¢ = 1,2, -+, k — 1.

Proor. For ¢ = k — 1, the congruence follows at once from condition (1)
in Theorem 4. Now consider any c-flat o, in the dual space,¢ = 1,2, -+ , k — 2.
Summing (38) over the points which lie on ¢, , we have

2w = (M -1EW+1)+ 24
=MD+ 2+1)+ D d;

by virtue of (35). Thus, since ¢ £ k — 2,
(43) > di= (2¢e + 1) + X w; (mod 2°).

Now, if we designate by Sy_o, the flat, of dimension k¥ — 2 — ¢, which in the
primary space is the dual of ¢, we have from (29)
(44) Dwi= 2" —1)n—- X N;.

e Sk—2-¢
The number of (k — 2)-flats which are “on” (pass through) S;_»_. is by duality
the same as the number of points on a c-flat, namely 2°™" — 1. Each of these
(k — 2)-flats contains all the points of Sy, . Further, any point outside
Si—2—. determines with Sy, a (kK — 1 — c¢)flat, through which pass 2° — 1
(k — 2)-flats; that is, every point of PG(k — 1, 2) which is not on S;_s_. is
on 2° — 1 of the (k — 2)-flats which pass through S;_»_. . Hence

L N=0@"-1) Y ot (@ -Dh- 32 )

SBk—_2—c Sk_2—¢ Sk—2—¢

=2 =-1Dn+2 > n;,

Sk—2—c
giving in (44)

2wi=2n— > i

o Sg—2—c
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whence, since n and all n;’s are integral
b )

> w; = 0 (mod 2°).

This result applied to (43) gives the congruence stated in the theorem.

The congruence condition in Theorem 4 is the special case ¢ = k — 2. Another
special case of particular importance is given in the following corollary, taking
¢c=1.

CoROLLARY 5.1. For any D-measure satisfying Theorem 4, the D-measure of
every line tn the dual space s odd.

The means of satisfying Corollary 5.1 are given by the following theorem.

TueOREM 6. A necessary and sufficient condition that a D-measure assigning
nonnegative integers d; to the points T; of PG(k — 1, 2), k = 2, shall be such
that the D-measure of every line is odd ts that either every point of the space has odd
D-measure, or every point of one (k — 2)-flat #* has odd D-measure while all
points outside w* have even D-measure.

Proor. 1. Suffictency. Suppose there is associated with the j-th point of

PGk — 1,2)

the measure d;, 7 = 1, 2, - -+, u, such that d; is a positive integer or zero. If
all the d; are odd, then clearly the sum of the measures of the three points on
any line is odd. If the d;’s associated with the points of a specified (kX — 2)-flat
«* are odd, while all the remaining d,’s are even, then the situation is as follows.
All the lines lying wholly within #* are clearly of odd total point measure. Any
line not lying wholly within 7* contains one point of #* and two points outside
«*; since both the latter points are of even measure, the total point measure of
the line is odd.

II. Necessity. Suppose that the measures d; have been assigned to the u points
of PG(k — 1, 2) so that each point measure d; is a positive integer or zero, and
the sum of the measures of the three points on any line is odd. Consider first
the case k = 2. We are then dealing with the projective line PG(1, 2), in which
(k — 2)-flats are points. There is just one line in the space, and that line by
hypothesis has odd D-measure. Obviously, either d; , dz, and d; are all odd, or
one of these d;’s is odd and the remaining two are even. Hence, the conclusion
stated in the theorem holds when & = 2.

Let us now assume that the stated conclusion follows from the hypothesis when
k = u, where u is any integer equal to or greater than 2. That is, given that
every line in PG(u — 1, 2) has odd D-measure, either all the points of (v — 1)-
space have odd D-measure or the points of a specified (u — 2)-flat have odd
D-measure while all the remaining points of the space have even D-measure.
For ease of reference, we shall call a point odd or even according as its D-measure
is odd or even.

Consider now a projective u-space PG(u, 2) satisfying the hypothesis. Then
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by our assumption concerning the nature of the measure in (u — 1)-space,
every (4 — 1)-flat in PG(u, 2) is of one of two kinds:

first kind:  all points are odd,

second kind: all the points of one (uw — 2)-flat are odd, and all the remaining

points of the (v — 1)-flat are even.
Hence in any (u — 1)-flat of the u-space there is at least one (u — 2)-flat
containing only odd points. Take such a (u — 2)-flat, say Z, and consider the
three (v — 1)-flats passing through it, say ¥1 , ¥, ¥s , keeping in mind that these
three (u — 1)-flats exhaust the u-space of points. Take a line m which does not
intersect =. That such choice is possible is seen from the following lemma.

LemMa 6.1. In PG(u, 2) there are 2™7* lines which do not intersect an arbitrary
(u — 2)flat =.

Proor oF LemMaA. There are 2°~' — 1 points in =. Through any one of these
points there pass 2“ — 1 lines of PG(u, 2). The number of these which lie en-
tirely in = is the number of lines passing through a point in (u — 2)-space,
namely 2“7 — 1. Also, the total number of lines in PG(a, 2) is [1],

@M —1nE*-1/2 - 1)@ —1) = 32" - 1)(2" - 1).

Hence, the number of lines intersecting 2, including those which lie wholly
within 2, is (2“7 — D[(2* = 1) — @ = D]+ 37 -1 -1) =
32" — 1)(2“* 4 2“7' — 1). Thus, since the total number of lines in PG(u, 2)
is 3(2*" — 1)(2* — 1), the number of lines which do not intersect = is

%(2u+l _ 1)(2u _ 1) _ %(21:-—1 _ 1)(2u+1 _I_ 2u—1 . 1) — 2214—2.

This establishes the lemma.

The line m will intersect each of 1, ¥z, ¥3 in a point. Say these points are
P, , P, P;, respectively.

(i) If m is of the first kind, Py, P;, and P; are all odd, so that, since all the
points of = are odd, each of ¥1, Y2, ¥; must be of the first kind, whence all the
points of PG (u, 2) are odd.

(ii) If m is of the second kind—say P, is odd and P, P; even—then ¢, is
of the first kind and ¥, ¢; are of the second kind, whence all the points of
PG(u, 2) lying on ¢, are odd and all the remaining points of PG(u, 2) are even.

Thus, either all the d;’s are odd, or the d;’s associated with the points of one
(u — 1)-flat are odd and the remaining d;’s are even.

Hence, the stated conclusion follows from the hypothesis when & = u 4 1
provided the same is true for k = . Since we determined at the outset that the
implication holds when k = 2, the same result for any integral k = 2 follows
at once by induction.

6. Determination of W. When k is fixed, W—the largest integer such that
all sequences of weight <W can serve as coset leaders—is a function of n. We
may write W = Wi(n), where the subscript k indicates the size (2¥) of the
group alphabet. There is also the inverse function n = Wi (W).
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THEOREM 7. For a given k, W = W (n) is a monotonically nondecreasing func-
tion of n, specifically

(45) Wi(n) £ Wi(n 4+ 1) £ Wi(n) + 1,

and n = Wi (W) is a monotonically increasing function of W.

Proor. Given W = Wy(n), there exists an n-measure over the points of
PG(k — 1, 2) such that w(U;) = 2W + 1 for all letters U; , that is, such that
the points lying outside any (k — 2)-flat have total n-measure equal to or
greater than 2W + 1. When » is changed to n + 1, we may amend the original
n-measure by simply adding 1 to the n-measure of any one particular point,
say P. Then clearly the total measure of the points lying outside any (k — 2)-
flat is not reduced. Indeed, such measure remains the same for every set of
points lying outside a flat which contains P, and increases by 1 for every set of
points lying outside a flat which does not contain P. Thus, the weight of every
letter U; of the alphabet is at least as large as it was under the original measure,
so that Wi(n + 1) = Wi(n). The two-sided bound (45) states that the jump
in value of Wi(n) cannot be greater than one for a unit increase in n. We may
establish this by considering the contrary. For that purpose, assume

(46) Wi(n) = W
and
(47) Wiin +1) = W + ¢, c =2

Then by (47) we can distribute a total measure n + 1 over the points of
PGk —1,2)

in such a way that the n-measure of the set of points outside any (k — 2)-flat
is at least 2(W 4+ ¢) +1 = 2W + 2c + 1, where 2¢ + 1 = 5. If now we
choose any one point P having nonzero n-measure, and reduce its measure by
unity, we shall have a total measure n distributed over the points of PG(k — 1,
2) in such manner that the total measure of the set of points outside any (k — 2)-
flat which contains P is at least 2W 4+ 2¢ + 1 and the total measure of the
set of points outside any (k — 2)-flat which does not contain P is at least
2W + 2c. Hence, for all letters U; of the alphabet, w(U;) = 2W + 2¢ =
2W 4+ 4 > 2(W 4+ 1) 4+ 1, so that Wi(n) = W 4 1, contradicting (46).

When n = k, the array of alphabet and cosets consists of the alphabet alone,
so that there is just the single coset leader I = (000 - -- 0), whence W = 0.
As n increases in steps of one, W either stays constant or increases by unity.
This step-function nature of W = Wy(n) shows that n is a monotonically in-
creasing function of W.

Corresponding to a given W there are in general more than one value of n.
The smallest n corresponding to a given W is a definite function of W, namely,
the smallest value of Wi (W). We shall call this value ni(W). Then ni(W)
is a single-valued monotonically increasing function of W. Theorem 7 shows
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that, for fixed k, the problem of finding W for given n is completely equivalent
to the problem of finding n,(W) for given W, that is, the minimum value of n
for which Wi(n) = W. Further, by considering n and W in the forms (32)
and (35), respectively, one can treat the matter in terms of y-classes.

Taking W in the form (35), W = 2"’ + ¢, let us consider the case e = —1
for the general value (32) of n:n = (2° — 1)t + «, where now ¢ > 0 (since W
must be nonnegative) and —1 £ v <2° — 3. Fore = —1, W = 2% — 1,
and an (n, k)-alphabet will allow all sequences of weight <W to serve as coset
leaders if and only if

(48) w(U;) 2 2W +1 =2"%—1 forallj.

Let us now define an n-measure over the points of the primary space as follows.
i) Ify = —1,

¢ for all 7 except one, say 7,
(49) n; =
t— 1 fori=1.
(ii) f0o =y £ 2 — 3,

t 4+ 1 for v distincet points Py, , Pi,, ++-, Py,
¢ for each of the remaining points of the space.

Since by (20) a letter U is identified with 2°~* points of the primary space, the
n-measure (i) gives W(U;) = (¢t — 1) + (2" — 1)t = 2*™%t — 1 for all 7,
and the n-measure (ii) gives w(U;) = 2°7't for all j, thus satisfying (48) in
each instance. Hence, for any value of n, k, the value (—1) can be attained
for e. That is,

(51) e = — 1for all n, k.

Now whenever (36) holds, then necessarily

I

2 w(U;) z (28 — 1)@t + 2 + 1),

j=1

whence, by (31) and (32), and taking (51) into account, we have

2y — 2F 4 1]
(52) -1 §6§|:—2(2—,;j”1*)—— ’

where [x] has its usual meaning “greatest integer not exceeding z.”’ In terms of
n, the upper bound in (52) is already well known (cf., for example, Weinitschke
[15] and MacDonald [12]); the refinement given by (59) below appears to be
new.

Since v £ 2" — 3, the quantity within brackets in (52) is bounded above by
2" — 1 — 1/(2"™ — 2), whence the most general boundary statement for e is

(53) —1Zex< 27— 2
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Applying (53) to (35), wehave W + 1 = 2% + (e +1),0 = (e + 1) =
2% — 1, so that
. [W + 1]
==

is a well-defined single-valued function of W. Similarly, the bounds on v in (32)
show that
[z22]
Lz -1
is a well-defined single-valued function of n. Moreover, if Wi(n) = W,
n+1 w41
(54) [gr:j] =t= [W]
Thus, for fixed k, the problem of finding W for given n has the equivalent forms:
(i) given m, to find W = Wi(n);

(ii) given, to find e = Wi((2¥ — 1)t + v) — 2% = ex(v), say;

(iii) given W, to find n = nx (W) = smallest value of » for which Wi(n) = W;

(iv) given ¢, to find v = yi(e) = smallest value of v for which e.(y) = e.

One general result for all k£ follows immediately from the demonstration
relating to the n-measure (49):
(55) ve(—1) = —1 for all k.

Further investigations concerning ex(v) or vx(e) need thus deal only with non-
negative values of y and e.

An immediate result of (55) is the complete specification of the classy = —1
of (n, k)-alphabets which give W-error-correcting codes, where W = 2% — 1.
Fory = —1, e = —1, Theorem 4 requires

2di= 27— @ - 1)(-1) =2 -1,
J

while Corollary 5.1 and Theorem 6 require that esther all the d,’s be odd or the
d;’s associated with the points of one (k — 2)-flat =;, be odd and all other d;’s
be even, so that there is only one possible D-measure: the D-measure which
assigns d; = 1 to each of the 2"* — 1 points of ;, and d; = 0 to each point
outside ;, . A unique n-measure follows from this D-measure by application
of (40), which here is

ni=1t+1— (1/2°H> d; + 1.
Since any (k — 2)-flat other than ;, meets m;, in a (k — 3)-flat, containing

27 — 1 points,
dod; =27 —1, 1% 1,

T =27 -,

71','0
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whence

t for Z?f 1:0,
(56) n; = (v = —1,any k).
t—1 for ¢ =1,

This is precisely (49), which is thus seen to be the untgque design for W-error-
correcting (n, k)-alphabets of the class y = —1. This is the Type ¢,1-alphabet
of MacDonald [12].

For nonnegative e and v, the functions v:(e) and ex(y) depend heavily on k.
The case k = 2 is readily resolved. Here PG(k — 1, 2) is the projective line
PGE(1, 2), (k — 2)-flats are points, n = 3t + v, W =t + ¢, and

—-12vy=22 -3
gives y = —1, 0, 1. The bounds given by (52) are

so that e = —1 for all y. The n-measure admitting this value of ¢ fory = —1
is given by (56): (¢, t, ¢ — 1); obvious n-measures admitting e = —1 (that
is, W =t —1)fory = 0,1 are (¢, t,¢t) and (¢, ¢, ¢t + 1), respectively. (The
weight w(U;) of the letter U, is the total n-measure of all points lying outside
the Uj-associated flat (here, point), so that in both the latter cases

w(U;) 22W+1=2t—-1
for all j.) The relation of W and = in the case k = 2 may thus be summarized:

n = 3t -+, t>0,v=—10,1;
k=2:

(57)
W=t+e, e = —1 for all v.

The upper bound on e given by (52) is a necessary, but unfortunately not a
sufficient, condition for the existence of an (n, k)-alphabet admitting e for
given k and y. One might expect that if the bound were refined by taking into
account all the conditions on an (7, k)-alphabet, the bound could be attained.
A first refinement of the bound results from application of Corollary 5.1 and
Theorem 6 to (39). We have by (39)
2y — 2P+ 1 -3 d;

2(2F — 1) ’
and by Corollary 5.1 and Theorem 6 there must be at least one (k¥ — 2)-flat
in the dual space in which all points have odd D-measure, so that

2od;iz (27 = 1)(1),

¢ < [2’°‘2(v -3) 4+ 1]0

(58) e =

whence

(59) -1

IA

28 —1



134 R. C. BOSE AND ROY R. KUEBLER

Consider the case k = 3. Here PG(k — 1, 2) is the projective plane PG(2, 2),
(k — 2)-flats are lines, n = 7t + v, W = 2t + e. Let us fix attention on deter-
mining v;(e). From (53) we have —1 < ¢ < 0, so that the only possible values
of ¢ are (—1) and 0. We know from (55) that y3(—1) = —1, so that we need
find only v3(0). For k = 3, ¢ = 0, (59) gives

2y — 5
<|“¥X—°
0-[ 7 ]

yielding ¥y = 3 as the smallest value of v potentially attainable, that is,
v3(0) = 3.

We demonstrate that the bound is actually attainable by exhibiting an n-
measure which defines an alphabet allowing all sequences of weight

W=2+4+¢e¢e=2t
to serve as coset leaders, given n = 7¢ + 3. Define the n-measure so that

for three noncollinear points of PG(2, 2), and n; = ¢ for the remaining four
points of PG(2, 2). Then the greatest total n-measure of any (k — 2)-flat
(line) is 3t + 2, so that the total n-measure of the points lying outside any
line is at least (7t + 3) — (3t + 2) = 4¢ + 1. That is, w(U;) = 4t + 1 for
all j, whence obviously all sequences of weight 2t = W can serve as coset leaders.
The relation of W and n in the case £ = 3 may thus be summarized:

1,0,1,2,3,4,5 fort > 0,
3,4,5 fort =0;

It

n="7+4, %
(60) k= 3:
e

I

=

1

—1 fory = -1,0,1,2,
0 fory = 3,4,5.

We observe that the upper bound in (59) came about by placing in (58) the
smallest possible value of Y, d; taking account of the congruence condition (42)
for ¢ = 1. This is the only pertinent value of ¢ when k = 3. When k£ > 3, addi-
tional congruence conditions must be brought to bear. Consider the case k = 4.
Here PG(k — 1, 2) is the projective three-space PG(3, 2), (k — 2)-flats are
planes, n = 15t + v, W = 4t + e. We set out to determine v.(e) for nonnega-
tive e; by (53) these values of e are 0, 1, 2. From (58) we have

(61) 8y = 15(2 + 1) + >_d;,

W =2t + e,

and if we designate by min_ d; the smallest value of ), d; consistent with
the congruence conditions on a D-measure, then a lower bound on v for given

¢ is provided by
(62) 8 = 15(2¢ + 1) + min) d;.
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The congruence conditions (42) are

(63.1) > d; = 2e + 1 (mod 2) for all lines oy,
[51
(63.2) >.d; = 2e+ 1 (mod 4) for all planes ,
(63.3) 2 d; =2 + 1 (mod8).
J

The condition (63.1) is satisfied by means of Theorem 6: either all the d; are
odd, or the d; for points of one plane #* are odd and all other d; are even. The
smallest provisional Y d;, say 2 *d;, is obviously given by the second al-
ternative, assigning d; = 1 to each point of #* and d; = 0 to each of the re-
maining points of the dual space. Let us call this measure the basic measure D*.
For it we have Y *d; = 7.

We shall consider the e-values in reverse order since the case ¢ = 0 presents
the most complications. When e¢ = 2, the congruence conditions (63.2) and
(63.3) are:

(63.2a) > d; = 1 (mod 4) for all planes ,

(63.38) > d; =5 (mod8).

We see that 2_*d; = 7 does not satisfy (63.3a) and that a minimum addition
of 6 must be made. When this addendum is distributed to point or points T;,
the addition to any point must be a multiple of 2 in order that the congruence
(63.1) be not disturbed. Let us distribute the addition by adding 2 to the D-
measure of each point on a line I not lying wholly in #* (meeting #* in T*, say).
Then there are four categories of planes with respect to D-measure: =*; the 3
planes 7“ containing ; the 3 remaining planes =° meeting #* in a line contain-
ing T*; the eight planes 7 meeting #* in a line not containing T*. The D-measures
of these planes are as follows.

2. d; = 6(1) + 1(3) = 9 = 1 (mod 4),
25 d; = 3(1) +1(2) + 3(0) = 5 = 1 (mod 4).

2(1) + 1(3) + 2(2) + 2(0) = 9 = 1 (mod 4),

2(1) + 1(3) + 4(0) = 5 = 1 (mod 4),

Thus (63.2a) is satisfied, min>_ d; = 7 + 6 = 13, and (62) gives
8y = 15(5) + 13 = 88, v = 11.

Moreover, the bound is attained by means of the D-measure specified in the
above argument, for reference to (40) shows that the resulting n-measure



136 R. C. BOSE AND ROY R. KUEBLER

satisfies
n, =t+ 11 — 2(5) — %[maxz d; — 5]

=t+1—%9—-51=t=0 for all 7,

Thus, vs(2) = 11.
When e = 1, we must satisfy

(63.2b) > d;=3 (mod 4) for all planes ,
(63.3b) 2_d; = 3 (mod8).
J

The basic measure D* does not satisfy (63.3b); the minimum amount which
must be added to D_* d; is 4. We observe that D* does satisfy (63.2b), since
7* has D-measure 7 and all other planes have D-measure 3. Hence, if the re-
quired addendum 4 is assigned to a single point, the congruences (63.2b) will
not be disturbed. Keeping in mind that an alphabet requires n; = 0 for all
i, and that by (40) n; is a decreasing function of )., d;, our aim is to keep
max;) ., d; as small as possible. Hence we assign the additional measure 4
to a point Ty lying ouiside =*. Then #* has D-measure 7, any other plane not
containing To has D-measure 3(1) + 4(0) = 3, and any plane containing To
has D-measure 1(4) + 3(1) + 3(0) = 7. Thus, minD_d; = 7 + 4 = 11, and

(62) gives v = 7. Moreover, the bound is attainable, since the D-measure con-
structed above gives

ni 2 t+ 7~ 2(3) — imax2 d; — 3]

=t+1—-37—-3l=t=0 foralls.

Thus, y4(1) = 7.
For ¢ = 0, we must satisfy

(63.2¢) > d; =1 (mod 4) for all planes ,
(63.3¢) Z d; = 1 (mod 8).
J

Again there must be an addition to )_* d; in order to satisfy (63.3). This time
the minimum addendum is 2; however, if that additional measure is given to a
point outside 7*, then the D-measure of 7* is 7 # 1 (mod 4), and if the addi-
tional measure is given to a point T* of #*, then any plane meeting #* in a line
not containing T* will have D-measure 3(1) + 4(0) = 3 5% 1 (mod 4). Hence
addendum 2 must be ruled out, and the minimum addition to )_* d; must be
considered to be 10. Keeping in mind that, for providing n; = 0 for all ¢, it is
desirable that max; ., d; be as small as possible, we try to spread the measure
10 as thinly as possible over the planes of the space. Let us then increase by 2
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the D-measures of 5 points such that not more than 3 are on any plane and
exactly one (say T*) is on #*. For ease of reference we shall call these 5 points
heavy points. There are now three categories of planes.

(i) The plane =*. The D-measure of this plane is 6(1) + 1(3) = 9
(mod 4).

(ii) Planes 7" meeting ©* in a line containing T*. There are 6 such planes, in
pairs, each pair forming with 7* a pencil. Any pencil exhausts the points of the
space. Hence, since not more than 3 heavy points are on a single plane, the 4
heavy points outside 7* must be distributed two each on the planes =" of any
pencil of the type under discussion. Hence the D-measure of any plane =" is
1(3) 4+ 2(1) + 2(2) + 2(0) = 9 = 1 (mod 4).

(ili) Planes = meeting =* in a line not containing T*. There are 8 such planes,
in pairs, each pair forming with #* a pencil. Since the 4 heavy points outside
4
3
heavy points each, and these must clearly be in 4 different pencils (since other-
wise there would have to be 7 heavy points in the space). The third plane of
each such pencil then contains one heavy point. Hence the D-measure of a
plane =’ is either 3(1) 4+ 3(2) + 1(0) = 9 or 3(1) + 1(2) + 3(0) = 5; both
values are congruent to one modulo 4. Thus (63.2¢) is satisfied,

minY, d; = 7 + 10 = 17,

and (62) gives v = 4. The bound is attainable since the D-measure specified
above gives

ni 2 t+ 4 —2(1) — }max) d; — 1]

=t4+2—-39—-1]=¢t=0 foralls.

Thus, v4(0) = 4. Since by (55) v4(—1) = —1, we may now summarize the
relation of W and n in the case k = 4:

1

Ii

7* are not on a single plane, there are < ) = 4 distinct planes containing 3

_ _ [=1,0,1,2,3,4,5, .-+, 13 for ¢ > 0,
no=18t+y, v = 4,5, ---,13 for ¢t = 0;
L —1fory = —1,0,1,2, 3,
(64) k= 4: S L _ ] oty =456
N ’ N lfory =17,8,9, 10,

2 fory = 11, 12, 13.

Given k, v, and e, a y-class of W-error-correcting codes is obtained by setting
up a y-class of (n, k)-alphabets defined by a D-measure which satisfies Theorem
4. The alphabet (22) is a member of such a class, specifically of a y-class 5(k = 3)
sincen = 5 = (2° — 1)(0) 4 5. For such a class, (60) gives ¢ = 0, and then
Theorem 4 requires

(1) ;d;’ = 4(5) — (NH(1) = 13,



138 R. C. BOSE AND ROY R. KUEBLER

(ii) Y. d; = 1 (mod 2) for all lines ,

™

(iif) ni=1t+3—3>d; — 1] = 0 for all 4,

the last inequality demanding for any D-measure admitting all values of ¢
> d; <7 foralld.

The congruence condition is satisfied through application of Theorem 6. The
class of alphabets to which (22) belongs is given by the D-measure exhibited
in Figure 2; the point measures d; are shown within parentheses. Application
of (iii) readily verifies that n; = ¢, ¢ + 2, ¢, ¢+ 1,¢t + 1, ¢ ¢t + 1fors = 1,
2, ---, 7, respectively. The n-measure for alphabet (22) is the special case
t=0.

As is clearly apparent in the foregoing example, there will in general be many
D-measures satisfying Theorem 4 for given k, v, and e. It is then reasonable
from such a class of D-measures to select as “optimum’ that measure (or those
measures) whose resulting code(s) will correct the maximum number of

(W + 1)-tuple

errors. An optimum alphabet is thus one which allows the maximum number
of weight-(W + 1) sequences to serve as coset leaders. The alphabet (22) is
such an optimum alphabet. The selection is based upon calculation of a quantity
A for each competing D-measure, where A is termed the discrepancy and is de-
fined as the number of weight-(W + 1) sequences which do not serve as coset

(2)

T
IIs M2
[T
T, Ts (0)
Iy > @)
IT,
Tz 6 Ts
(3) (3) )

FiG. 2
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leader. The derivation of a formula which allows convenient calculation of A
will be presented in a subsequent paper. Also available are complete tables of
optimum designs for k = 2, 3, 4 (all n), arrived at by application of the fore-
going notions.

For increasing k, the establishment of ni(W) and the orderly construction of
D-measures become increasingly more complicated. Thus far no general pro-
cedures are known. Some results in these matters, based on the geometric
structure and theorems herein reported, will be presented in later communica-

tions.
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