MOMENTS OF THE ABSOLUTE DIFFERENCE AND ABSOLUTE
DEVIATION OF DISCRETE DISTRIBUTIONS!
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1. Introduction. Johnson [3], Crow [1] and Ramasubban [5] have discussed the
evaluation of the mean difference and the mean deviation for some positive
integral valued discrete distributions. These are particular cases of a more general
statistic which may be defined as

(la) A,- = Ele - X2 |r,

where X; and X, are two random variables with given distributions. Statistic
(1a) will be referred to as the rth moment of the absolute difference of X; and
X, . In this paper, A, is evaluated when X; and X, are independent and both have
distributions—possibly different ones—within one of the following families of
distributions: (i) Poisson, (ii) Pascal, and (iii) Binomial. The case when X,
and X, are distributed as two independent Logarithmic variables, and the cases
when X; and X, are independent and have distributions in two different families
of distributions (chosen from the Poisson, Pascal, Binomial, and Logarithmic
families), can be treated along similar lines, but the results are not given here in
order to conserve space. Methods are also given to evaluate A, when X is a
fixed constant and when X, is distributed as (i) a Poisson (ii) a Pascal (iii) a
Binomial (iv) a Hypergeometric and (v) a Logarithmic random variable. In
this special case, A, will be called the rth moment of the absolute deviation of
X, about X, and denoted by &,.. I am investigating two sample tests, based on
the sample analogues of the A,’s, that may be appropriate when the two samples
are from two specified but different parametric populations.

2. An expression for the rth moment of the absolute difference | X; — X, |.
Let X, and X, be two arbitrary independent positive integral valued random
variables with probabilities P{” and P{® of obtaining X; = 7 and X, = ¢ re-
spectively. Then the rth moment A, is given by

A, = Ele—ler
= > KP{X,— X, = k| X, = JP{X; = 4}
ik

(1) + ;k’P{X1 — X, = k| X, = ¢JP{X, = 1}

S EPPPE, + ; KPPPE,

ik

where the summations are over 1,2, 3, +-- .
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3. Some applications of equation (1).
(a) Moments of the absolute difference for two independent Poisson random

variables. Let
PP =™/, PP = e\i/il
Then ‘

o SR EFMAN | B = E (M N)N
Ar=e {Z=(:n§> '&'(Z-l-k)'—l_zz—;l; 7,'(1+Ic)'}

=e¢™M™(4, + B,) say.

In order to simplify 4, , write A} = ». Then A, can be rewritten in the form

Ar = ( axz)r{ Z‘ ,; w@”fk)'}

a r
= <)\2 G_M) Ao, say,

where we denote the term in curly brackets by A, . It is apparent that 4, can
be written in the form

(4) AO i( |)2 1F1(1 7 + 1; )\2)

where 1F1(a; v; z) is a confluent hypergeometric function [2]. Operating on (4)
by A29/0\; yields

(5) A= (M - x—) Ao + v F (35 3; —4/) + i V(31 —4/).

(2)

(3)

Successive application s times of the operator \,d/dA\: leads to the recursion
formula

(6) A= Z (j) ()\2 + (=)™ )%) A+ (-1)° )%2 VP35 1; —44/7).

Ao can be calculated from formula (4), using the tables given by Nath [4] to
get the values of the confluent hypergeometric functions involved therein, and
then 4, can be calculated by the repeated application of (5) and (6). Calculation
of B, follows along similar lines. Equation (2) can then be employed to calcu-
late A, .

For the particular case when \; = A, = A, i.e. when X; and X, are Poisson
variates with the same mean, A; reduces to

(7) Ay = 2MiF1(35 3; —4N) + (35 1; — 4N}

On using the facts that the Bessel function of the first kind J,(x) [2] and the
modified Bessel function of the first kind I,(x) [5] are given by

() () .
J,(x) = ;) 6+ 1) = O, Fi(3 + vy 1+ 20; 26x)
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and
(x)n+2t'
" Siln+ 0!’
we obtain
(8) Ay = 20 MIo(20\) + Li(2N)},

which agrees with formula (2.18) of Ramasubban [5].

(b) Moments of the absolute difference for two Pascal or two Binomial
random variables. First, let X; and X, be two independent Pascal random
variables. Write

PY = (kx +i— )( ) PO = ( e 1)(?_2)‘
2 Q1 7 q2 '

From (1) (by changing k to j), we have

g b i — k2+i+f—1)(&£z)‘(&>’
A, q1 Q2 {z;(”;) ( )( i+j | 0 g2 ¢

o RS )
+ ,Z=:o :vz-:o‘7 i+] t e/ \q
= ¢i"¢:"*(4A, + B,), say.

In order to simplify A,, we now write D2/ g = w1 and p./ge = v.. Conse-
quently, we can write

NS & A=\ +i—1
b () (B ()

(10)
< oFf1(ks + 4,153+ 15m) }

where o Fi(a, b; ¢; z) is a hypergeometric function [2]. Denote the term in the
curly bracket by A, . A recurrence formula for calculating 4, is

8 8—j
As+l — Z (8) A, (v2 i ) l: ks + kyn :l
i=0 \? dve 1—v  v—r

+vlkle1(kz,k1+1;1;”)(”261)( 1 )
Ve

Ve — 1

(11)

Since the value of A, can be computed to any degree of accuracy from its formula,
the quantities we need to know before we can use (11) are

(V2 9 [ Fe + k1m :I and (Vz 3—) 1 for all s.
i 22) 1—v v —n ovs) vo — n

Since the derivatives with respect to »; of the functions involved are relatively
simple, we will give here a method for expressing (79/97.)’f in terms of (3/9v.)’f.
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First, we observe that

oY, o 2 8
(12) (y25;2)f—ha__1’2f+vza_vgf'

It follows that (7.0/dv:)’f has the form

(13) Za.vz( ) 1,

)

where a{” are constants, not involving f. To evaluate a{”, we note that

a s+1 . a [} s+1 . a 4
(19 (n2)" 7+ 5 ol + ottt (L) 1= Z i (2 ) 5
with the convention that a{” = 0 for ¢ < s. This yields us the set of recurrence
formulae
(15) ai"™ = ¥ + af?).

It is evident that a{® = 1. Hence (15) can be used successively to obtain the
various values of a{® and then (13) used to obtain (2(8/dv2))%.

The calculation of B, follows along similar lines. A, can then be calculated
from (9). For the particular case when X; and X, are Pascal random variables
with the same parameters, i.e.

q

21029) —2%k
A = [25P
! ( ¢ /?

(16) 2
{zFl(k+1 k+1;1; —)+(k+1) 2F1(k+2,k+1;2;§;)}.

Upon using the relation (see [2], eqn. (36) pp. 113) that
F(a,b;a — b+ 1;2)

17

17) =14+ VZ) " Fi(a,a — b+ %;2a — 26+ 1;4V/Z(1 + VZ)7Y),
we obtain

(18) Ay = 2kpg Fi(k + 1, 3; 2; —4pq)

which agrees with formula (2.12) of Ramasubban [5].
Suppose now that X; and X, are Binomial random variables with

PY = (n‘) pigt™ and PP = (’Zz) pigs".

It is apparent that the formulae for this case can be obtained from those given
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for the Pascal case by changing the k’s to (—n)’s, p’sto (—p)’s and the quanti-
ties (k T :IL' - 1) to (—1)° (f) Hence no separate discussion need be given
here for this case.

4. A method to evaluate the moments of an absolute deviation. Let X be an
arbitrary positive integral valued random variable and let P; denote the proba-
bility of obtaining X = 7. Then the moment generating function (m.g.f.) of
| X — m | where m is a fixed constant is given by

© [m]
(19) m(t) = Eef= ™ = > TP, + e tmp,
i={ml+1 i=0
Here, [m] is the largest integer, less than or equal to m and the second term is
considered zero when m < 0. Since, for m < 0, moments of | X — m | are the
same as those of (X — m), we will consider only the case when m > 0. Equation
(19) can now be simplified to

m(t) — e—mt Z e”P,- _ 6mt Z e—itPi + emt Z 6_“Pi
(20) i=[m]+1 i=[ml+1 =0

= y(t) — ¢(—t) + "M (—t) say,

where M (1) is the m.g.f. of X and wherein ¢(¢), the first term in (20) may be
referred to as the incomplete m.g.f. of X — m. Since the even moments of
| X — m | are the same as those of X — m and hence obtainable by using the
regular statistical techniques, we will consider only the moments of odd order,
say 62,41 . On differentiating (20) (2r + 1) times and setting ¢ = 0, we have

(21) Sortr = 20%0(0) — E(X — m)*™,

As remarked above, calculating of the second term poses no new problem. Our
task therefore reduces to that of obtaining ¢ (0).

5. To obtain the value of ¢+ (0) for some particular cases.
(a) The Poisson distribution: Let P; = ¢ "\'/il. Then, from the definition

of ¥(¢)
(22) Y(t) =

(i-m)t € N’
€ T

i={ml+1 2!

which can be written in the form KG(0, t), where

B e—)\)\(m]ﬂ
(23) K=tm+ov
and
(24) G(0,t) = exp {t([m] — m + 1)} Fi(1; [m] + 2; \e').

In order to obtain a convenient method to evaluate ¢* 7 (0), let us define
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(25) G(a,t) =exp {t([m] — m 4+ o + D}Fi(a + 1;0 4 [m] + 2; \e').
Differentiation of (25) yields

Ma + 1)
mG(a + ]., t).

Successive differentiation of (34) s times at ¢ = 0 gives the recurrence formula,

Q" (a,0) = (Im] — m + a + 1)G“(a,0)

(26) GV(a,t) = (Im] — m + o + 1)G(a, t) +

(27) NMa+1) @
m G (a + 1, O).

Since G(a, 0) = 1Fi(a + 1; o + [m] + 2; A) is the confluent hypergeometric

function, we can obtain G(«, 0) for @« = 0, 1, -+, 2r 4+ 1 by referring to the

tables of Nath [4]. G**(0, 0) can then be calculated by the repeated applica-
tion of (27). Calculation of ¢**”(0, 0) immediately follows, since as can be
easily seen, ¢y (0,0) = KG* (0, 0).

(b) The Pascal, the Binomial and the Hypergeometric distributions: For the

Pascal distribution,
e (7))
? q

By proceeding along lines similar to those in (a), we can write Y(¢) in the form
YH(0, t) where

(O

and
H(a,t) = exp {tlm] + 1 — m + «)}oI"

(29) D
'(’C+[m]+a+1,1+a;[1nI+a+2;6e).

For the Hypergeometric distribution

(30) P; = (]\Z.p) (n]\:? Z) / (JZ)
and

(31) Y(t) = ZF(0, t)
where

(32) Z = ([,ﬁil) (n—afrg—l)/ <JZ)’

Fla,t) = exp{t(fm] — m 4+ 1 4+ a)}sFo(—n + [m] + 1 + a;

33
(33) —Np+ml+14+a,1+a;m+2+a Ng—n+[m]l+ 2+ a;e),
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and sFy(e, B, v; 0, €¢; Z) is a generalized hypergeometric function (cf. [2]). The
recurrence formulae for obtaining H* (0, 0) and F*"*°(0, 0) are

H(a+1)(a, 0)=(a—m + m] + I)H(a)(a,O)

(34) palk+ 14 [m] + o) @
-I- T +2 H*(a + 1,0)
and
P 0y = (=N Il £ 1t @) (=Np+[ml + 1+ )1+ )

(35) ’ (Im] + 2 + @) Ng+n+[ml + 2+ a)
Fa +1,0) + (] + « — m)F*(«,0)

respectively. Calculation of y**°(0, 0) for the two cases follows from its rela-
tionship with H**?(0, 0) and F**”(0, 0) which can be computed by the suc-
cessive application of (34) and (35).

The formulae for evaluating ¢*"+”(0) in the case of the Binomial distribution
can be obtained from those in the case of the Pascal distribution by making the
changes suggested in 3(b).

(¢) The Logarithmic distribution: For the Logarithmic distribution, P; =
ar'/iand —alog (1 — 7) = 1. Hence

it i
ae T

(36) () =) =

i=lmi+1

In order to obtain a convenient method to compute 2+ (0), we first observe
that

(37) ¢(D(t)(1 _ 're‘) = aT(['"Hl)e'(['"HD.

This leads to the recurrence relation

@ 60 = (el + 1+ (5) 600,

After having calculated ¢(‘) (0) fors = 1,2, - -+, 2r 4+ 1 by using (38), ¢**°(0)
can be calculated by using the recurrence formula

v = 5 (T e -mre,

which can be easily derived from (36).

6. Conclusion. The general expressions given in sections (2) and (4) can be
employed to obtain methods for finding the moments of the absolute difference
and absolute deviation for some well known distributions. It was shown in section
(3) that the formulae for A, involve as particular cases, the results obtained by
Ramasubban [5]. It can be easily shown that the formulae in section (5) also
lead to his results when we set » = 0. This has been left out of the discussion for

brevity.
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